$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

PHYSICS
 ASIAdvanced

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2011 examination in GCE PHYSICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Notes on the interpretation of these marking schemes

The marking schemes, whilst reasonably complete do not give all the answers which were credited by the examiners. It is hoped that the schemes are self-explanatory, though they will need to be read alongside the question papers. The following clarifications may be of use:

Statements in brackets [] are exemplification, alternatives, acceptable ranges, e.g. $3.8[\pm 0.3] \times 10^{-19} \mathrm{~J}$ or statements which, whilst desirable in an answer were not required on this occasion for full marks. [accept....] indicates that, whilst not a good answer, it was accepted on this occasion.

The numbers in parentheses () are the marks, usually 1 , for each response.
e.c.f. stands for error carried forward, and indicates that the results of a previous (incorrect) calculation will be treated as correct for the current section. i.e. the mistake will only be penalised once.

The expression [or by impl.] indicates that the mark is credited when subsequent credit-worthy working or answer demonstrates that this idea/equation has been used.

In general the physics of the answer needs to be correct but specific expressions or methods are often not required. The expression [or equiv.] emphasises that the particular idea, could be expressed in several different ways.

Incorrect or absent units are not always penalised, but they are present in the mark scheme for completeness. Where ((unit)) appears it indicates that the unit is required for the mark to be awarded but attracts no separate mark. A (1) following the unit, in addition to a (1) following the numerical part of the answer, indicates that the unit itself attracts a mark.

Example: $25 \mathrm{GPa}(1)\left(\left(\right.\right.$ unit)) indicates that the unit (or correct alternative. e.g. $2.5 \times 10^{10} \mathrm{~N} \mathrm{~m}^{-2}$) is a requirement for the mark;

25 (1) GPa (1) indicates that the numerical part of the answer $\left[2.5 \times 10^{10}\right]$ and the unit Pa each attract a mark. In this case, an answer of 25 GN would be awarded the first mark but not the second, it being considered that the SI multiplier is numerical.

Unless otherwise stated, no penalties for excessive significant figures are applied in these papers. Significant figures are usually assessed only in the practical units.
N.B. This Mark Scheme is not a set of Model Answers.

Question			Marking details	Marks Available	
1	(a) (b) (c)	(i) (ii)	Use of $\cos 40^{\circ}$ [or $\sin 50^{\circ}$] (1) [or by impl.] $\left(\frac{200}{\cos 40}\right)(1)=260 \mathrm{~N}$ [subst or ans] Work done $=$ Force \times distance (1) in direction of force (1) There is no movement in the vertical direction [or equiv.] (1) I. Work done $=200(1) \times 2000=4.0 \times 10^{5} \mathrm{~J}(($ unit $))[$ or 400 kJ$](1)$ II. $P=\frac{4 \times 10^{5}(\mathrm{ecf})}{30 \times 60(1)}(1) \quad[\mathrm{NB}$ or use of $P=F v$] Attempt at resultant force calculation (1) $\Sigma F=261(e c f)-200(1)[=61 \mathrm{~N}]$ [correct sign needed] $a=\frac{61}{40}\left[=1.53 \mathrm{~m} \mathrm{~s}^{-2}\right][$ no ecf on use of 261 N$]$ (1)	2 3 2 2 3 [12]	
2	(a) (b) (c) (d)	(i) (ii)	Ammeter shown in series with bulb [or in series with bulb/voltmeter parallel combination] (1) Voltmeter shown in parallel with bulb [or across bulb/ammeter series combination] (1) 2.0 A 6.0Ω Either: $\frac{1}{18}+\frac{1}{6(\mathrm{ecf})}=\frac{1}{R_{\\|}}(1) ; R_{\mathrm{par}}=4.5 \Omega(1)$ Subst into pot div equations: $12=\frac{4.5}{4.5+R} \times 16(1)$ Or: $\quad I_{18 \Omega}=\frac{12}{18}[=0.67 \mathrm{~A}](1) ;$ So $I_{\text {total }}=2.67 \mathrm{~A}[\operatorname{ecf}$ from $(a)](1)$ $R=\frac{4(1)}{2.67(\mathrm{ecf})}=1.5 \Omega(1)$ Graph shown with positive gradient and linear through the origin for low values (1) and smoothly reducing gradient for higher values [NB - not negative gradients at end](1)	2 1 4 2 [10]	

Question			Marking details	Marks Available
3	(a) (b) (c)	(i) (ii) (i) (ii)	Moment [or torque / couple] $\begin{aligned} & 4.0 \times 0.40=\Delta \times 0.20(1)[\text { or by impl.] } \\ & \mathrm{Wt} \text { of } \Delta=8.0 \mathrm{~N}(1) \\ & 12.0 \mathrm{~N}(1)[\mathrm{ecf}=4.0+(b)(\mathrm{i})] \\ & 12(\mathrm{ecf}) x(1)=9.0(0.8-x)(1) \\ & x=0.34 \mathrm{~m}(1) \end{aligned}$ x needs to stay the same (1) because force/weight [and hence the moment] at C are unchanged (1) N.B. Ecf from (b)(ii)	2 1 3 2 $[9]$
4	(a)	(i) (ii) (iii)	[gradient $=] \frac{v-u}{t}(1)$; represents acceleration [accept: a] (1) [Area $=] u t+\frac{1}{2} t(v-u)$ or $\frac{1}{2}(u+v) t(1)$ Represents displacement [accept: distance [travelled in a given direction]] (1)	2 2 2
	(b)	(i) (ii)	$\begin{aligned} & x=\mathrm{ut}+1 / 2 a t^{2} \text { used with } u=0(1) \\ & x=36 \mathrm{~m}(1) \\ & v=u+a t \text { used with } u=0(1)\left[\text { or } v^{2}=u^{2}+2 a x \text { used with } u=0\right] \\ & v=6 \mathrm{~m} \mathrm{~s}^{-1}(1) \end{aligned}$	2 2
	(c)	(i) (ii)	$\begin{aligned} & x=\frac{1}{2}(u+v) t \text { used }(1) \\ & t=40 \mathrm{~s}(1)[\text { Use of } u=0 \text { seen } \rightarrow 1 \text { mark penalty] } \end{aligned}$ Use of $a=\frac{v-u}{t}(1)$ [Use of $u=0$ seen $\rightarrow 1$ mark penalty] $a=[-] 0.15 \mathrm{~m} \mathrm{~s}^{-2}(1)$	2 2
	(d)		$\begin{aligned} & \text { Axes }[\text { inc }+ \text { and }- \text { acceleration; time; labelling }] \text { (1) } \\ & \text { Horizontal line from } 0 \mathrm{~s} \text { at } 0.5 \mathrm{~m} \mathrm{~s}^{-2}(1) \\ & \text { Horizontal line from at }-0.15 \mathrm{~m} \mathrm{~s}^{-2} \text { [ecf from (c)(ii)] (1) } \\ & \text { Change of } a \text { at } 12 \mathrm{~s} \text { and cease at } 52 \mathrm{~s}(1) \end{aligned}$	4
	(e)	$\begin{array}{r} \text { (i) } \\ \text { (ii) } \end{array}$	157 N $\left(\frac{157(\mathrm{ecf})}{4(1)}+8\right)[=47 \mathrm{~N}]$ (1) [or equivalent working.] NB Use of factor of $2 \rightarrow 0$ marks	1 2 [21]

Question			Marking details	Marks Available
6	(a)	(i)	V is the terminal p.d. - or clear explanation in energy terms: energy per coulomb delivered to external circuit / [NB "per coulomb" / "per unit charge" required on one of (i) and (ii) if energy explanation given] P.D. across the internal resistance [accept lost volts - "bod"] / energy per coulomb lost / dissipated in the internal resistance / cell	1 1
	(b)	(i) (ii) (iii)	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 0.4 \Omega \text { [allow e.c.f. from }(b)(\mathrm{i})] \\ & \text { e.g. "Drains" the cell quickly, Cell gets hot } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
	(c)		Correct use of $I=\frac{E}{R_{\text {Tot }}}$ $I=1.0 \mathrm{~A}$	2
	(d)		Trial and error acceptable: Use of $1 \times, 2 \times, 3 \times \ldots$ (1); corresponding total resistance (1); use of $\frac{V}{R}(1)$ leading to 5 cells (1)	
			Nice answer: Subst in $I=\frac{E}{R+r}: 3.0=\frac{2.4 n}{2.0+0.4 n}[$ ecf on $n \times 2](1)$ Re-arrangement: $6.0+1.2 n=2.4 n \rightarrow n=5$ Marking points with analytical answer: $n \times 2.4$ (1) Use of total resistance $=2.0+0.4 n(1)$ Application of $I=\frac{V}{R}(1) ; n=5(1)$	4
				[11]

Question			Marking details	Marks Available
1	(a) (b)	(i) (ii) (i) (ii) (iii)	Longitudinal waves: Directions of [particle or molecule or air] oscillations and direction of travel of wave [or energy] [NB not particles travelling](1) are parallel [or parallel / antiparallel or the same] (1) [Independent marks] Wavelength: [Shortest] distance [along the direction of propagation] between air layers [or particles or molecules or points] oscillating in phase (\checkmark) or distance between [the centre of successive] compressions [or rarefactions]. [NB not 'peaks' and 'troughs'] Interference between [or superposition of] [progressive] waves (1) travelling in opposite directions. (1) [Not 'constructive' or 'destructive' interference only] N.B. Working must be shown. $\lambda=0.44 \mathrm{~m}$ (1) $v=f \lambda$ correctly applied (1) [or $v=\lambda / T$ correctly applied $]$ $v=330 \mathrm{~m} \mathrm{~s}^{-1}(($ unit $))$ (1) [Correct answer only $\rightarrow 1$ mark] [No ecf unless wrong answer commented upon!] $\frac{\lambda}{2}=3.3 \mathrm{~m}$ or $\lambda=6.6 \mathrm{~m}$ (1). So nodes must be further apart than 2 m [or equiv] (1) [ecf from incorrect v]	2 1 2 3 2 [10]
2	(a) (b) (c)	(i) (ii) (i) (ii) (iii)	$v_{\text {air }}>v_{\text {glass }}(1), f_{\text {air }}=f_{\text {glass }} \text { and } \lambda_{\text {air }}>\lambda_{\text {glass }} .(1)$ Cycles [or oscillation] can't appear or disappear [at boundary] or equiv. / frequency determined by the source [not just f is constant] I. Diagram: Reasonable path drawn [no gross departure from law of reflection] with emergent ray in correct quadrant (1) II. 2 sensible parallel paths inside block labelled (1) Emergent ray labelled as parallel to incident ray. (1) Any $2 \times$ (1) from: - minimises multimode dispersion [or equiv] (\checkmark) - cuts down range of path lengths (\checkmark) - less pulse broadening or less likelihood of overlapping or more rapid data [allow: smearing and jumbling] sequence possible (\checkmark) [not interfere or distorted]	2 1 3 2 1 2 2 $[13]$

Question			Marking details	Marks Available
3	(a) (b) (c)	(i) (ii) (iii) (i) (ii)	Electrons are emitted [from tin] (1). Electrons are negatively charged [or plate originally neutral] or electrons knocked out by photons (1) Plate left with a positive charge (1) Work function: [Minimum] energy [or work] needed for an electron to escape [from metal surface] $h f_{\min }=\phi$ [or by impl.] or $0=6.63 \times 10^{-34} f_{\min }-7.1 \times 10^{-19}(1)$ $f_{\text {min }}=1.07 \times 10^{15} \mathrm{~Hz}(1)$ $1.5 \times 10^{-19}=h f-7.1 \times 10^{-19}$ [or equiv. or by impl.] (1) $f=1.3 \times 10^{15} \mathrm{~Hz}$ $\text { number per second }=\frac{0.64 \times 10^{-6}\left[\mathrm{C} \mathrm{~s}^{-1}\right]}{1.6 \times 10^{-19}[\mathrm{C}]}$ Number of photons per second $=4.0 \times 10^{12} \times 1200$ Multiplication by 1200 at any stage [or by impl.](1) Photon energy $=8.6 \times 10^{-19} \mathrm{~J}$ [or by impl.] (1) UV energy per second $=4.1 \mathrm{~m}(1) \mathrm{W}(1)\left[4.1 \times 10^{-3} \mathrm{~J} \mathrm{~s}^{-1} \checkmark \checkmark\right]$	3 1 2 2 1 4 [13]
4	(a)	(i) (ii) (iii) (iv)	Ground state to level T labelled I or pumping (1) Level U to level L labelled II or stimulated emission (1) $E_{\text {phot }}=\frac{h c}{\lambda}\left[\right.$ or $E_{\text {phot }}=h f$ and $\left.f=\frac{c}{\lambda}\right][$ or by impl.] (1) $E_{\text {phot }}=1.9[0] \times 10^{-19} \mathrm{~J}(1)$ Energy of level U $=2.2 \times 10^{-19} \mathrm{~J}$ (1) I. [Stimulated emission is triggered by an incident] photon (1) with energy $1.9 \times 10^{-19} \mathrm{~J}$ [ecf but not 2.2×10^{-19}] or equal to the difference between levels U and L (1) [no ecf from incorrect identification of transition in (a)(i)] II. Photon emitted together with the original photon [accept: there are now 2 photons where there was previously 1 ; also accept correct answer given in I.] III. Stimulated photon and incident photon in phase. Promotes population inversion [between levels U and L] (1) Either less pumping needed, or population inversion needed so that stimulated emission predominates over absorption (1) Less energy input needed for a given [light] energy output (1) [or more efficient]	2 3 2 1 1 2 1 [12]

Question			Marking details	Marks Available
5	(a)	(i) (ii) (iii)	Diffraction [Slit width much] greater than the wavelength (1) [Angular] spread [of central maximum] is small. (1) [Width of] spread decreases (1) [accept: less diffraction] Peak intensity increases (1)[or intensity increases because more light is let through].	2
	(b)	(i) (ii)	$1.25 \mathrm{~mm}$ Use of $\lambda=\frac{a y}{D}$ with symbols correctly interpreted (1)	1
		(iii) (iv)	$\lambda=625 \mathrm{~nm}[\mathrm{ecf} \text { on } y](1)$ When path difference is a whole number of wavelengths [not just: path difference $=0$] (1), waves from the slits arrive [or equiv.] in phase (1) and interfere constructively (1) Less light diffracted at greater angles / intensity envelope the same as the diffraction graph.	2 3
	(c)		Any $2 \times(1)$ from: - Light from laser may be brighter \checkmark [not just collimated] - Light from laser coherent / no need for single slit / light source need not be distant \checkmark - light [more nearly] monochromatic \checkmark	2
				[14]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 6 \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Quark-antiquark combination [or equiv.] \\
Only \(\bar{u} d\) combination [in the \(1^{\text {st }}\) generation] gives a charge of +e [or \(\frac{2}{3}+\frac{1}{3}=1\)] \\
I. \(\quad[u \bar{d}+\mathrm{uud}+\mathrm{udd} \rightarrow \mathrm{uud}+\mathrm{uud}]\) u numbers: LHS \(=4\); RHS \(=4\), so conserved \\
II. d numbers: LHS \(=2\); RHS \(=2\), so conserved \\
Strong force (1) \\
Any \(1 \times(1)\) of: \\
- 'high energies' suggests strong \(\checkmark\) \\
- separate conservation of \(u\) and \(d \checkmark\) \\
- no neutrino / lepton involvement \(\checkmark\) \\
- quark regrouping / only quarks involved \(\checkmark\) \\
Any intelligible method [e.g. baryon and charge conservation or u and d numbers conservation, or quark counting to give \(9 \mathrm{u}+9 \mathrm{~d}\) in X , or comparison with equation in (b) noting that \(\pi^{+}+\mathrm{n} \rightarrow \mathrm{p}\)] (1) [or by impl.] \\
\(A=6\) and \(Z=3\) (1) \\
Proton number / atomic number [accept: chemical element]
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1 \\
1 \\
2 \\
2
1 \\
[11]
\end{tabular} \\
\hline 7 \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& (i)
(ii) \& \begin{tabular}{l}
\(T=\frac{W}{260 \times 10^{-9}}(1-\) trans \()\) [or by impl.][allow this mark even if \(10^{-9}\) omitted]
\[
=11 \times 10^{3} \mathrm{~K}(1)((\text { unit }))
\] \\
Black body [accept: non-reflecting surface / radiates equally in all directions] \\
Radius is \(\times 70\) so area is \(\times 70^{2}\) [or equiv, or by impl.] (1) \\
Temperature is \(\times 2\), so \(T^{4}\) is \(2^{4}\) [or equiv. or by impl.] (1) \\
[So] Power is \(\times 80000\) (1) \\
Absorption [by atoms in the stellar atmosphere or in interstellar gas] of specific wavelengths from the star's continuous spectrum [or from star's radiation / star's light] (1) \\
Any \(2 \times\) (1) from: \\
- because photons of specific energy abso rbed \(\checkmark\) \\
- Photon energies correspond to transitions between [atoms'] energy levels \(\checkmark\) \\
- Absorbed radiation re-emitted but in all directions \(\checkmark\)
\end{tabular} \& 2
1

3

3
[9]

\hline
\end{tabular}

PH4

	uesti		Marking details	Marks Available
2.	(a)	(i) (ii)	Relevant comment, e.g. stem suggests not at equilibrium when released / graph shows equilibrium at $\mathrm{t}=0$ / graph contradicts stem I. $\quad 0.08 \mathrm{~m}(1)$ II. $\quad 1.2 \mathrm{~s}(1)$	1
	(b)		$\begin{aligned} k & =\frac{4 \pi^{2} m}{T^{2}} & \text { (1) } & {[\text { correct transposition at any stage] }} \\ & =11 \mathrm{~N} \mathrm{~m}^{-1} & \text { (1) } & ((\text { unit including any SI equivalent })) \end{aligned}$	2
	(c)	(i) (ii)	$\begin{aligned} & \left\{\omega=5.24 \mathrm{rad} \mathrm{~s}^{-1}\right\} \text { or }\left\{\text { use of } v_{\max }=\frac{2 \pi A}{T} \text { [or equiv] }\right\}(1) \\ & v_{\max }=0.42 \mathrm{~m} \mathrm{~s}^{-1}\left[\text { accept } v_{\max }=0.080 \times 5.24\right]+\operatorname{comment}(1) \\ & {\left[\text { Full marks available for use of tangent } \rightarrow T=0.42 \pm 0.7 \mathrm{~m} \mathrm{~s}^{-1}\right]} \\ & \text { Correct sequence of } v \text { values (i.e. correct phase) (1) } \\ & t \text { values correct, and reasonable curve plotted } \end{aligned}$	2 2
	(d)	(i)	I. $\quad-$ [or "decrease"] (1) $0.035 \mathrm{~J}[\pm 0.003 \mathrm{~J}]$ (1) II. $-0.31 \mathrm{~J}[\pm 0.01 \mathrm{~J}] \mathrm{NB}$ Correct sign required.	$\begin{aligned} & 2 \\ & 1 \end{aligned}$
		(ii)	[0.35J of] elastic [potential] energy gained (1) [Accept: [more] energy stored in spring [at 0.9 s]]	1
	(e)	(i) (ii)	ordinate labelled "amplitude" and abscissa labelled "frequency" ϕ is [close to] the natural frequency [or by implication] (1) [NB not resonant frequency] $0.83 \mathrm{~Hz}(1)$ [e.c.f. from (a)(ii)(II)]	2
				16

Question			Marking details	Marks Available
3.	(a)	(i)	I. $\overline{c^{2}}=\frac{3 p}{\rho}(1) \quad$ [transposition at any stage] $\begin{equation*} =\frac{3 \times 100 \times 10^{3} \times 1.5 \times 10^{-3}}{2.4 \times 10^{-3}} \tag{1} \end{equation*}$ [correct substitution or by implication] $\sqrt{\overline{c^{2}}}=433 \mathrm{~m} \mathrm{~s}^{-1}$ [Wrong attempts based on $p V=\frac{1}{3} \mathrm{Nm} \overline{c^{2}}$ can score the last mark if $\sqrt{ }$ correctly taken] II. collisions ["random process" not enough] III. $\quad 935^{2}+743^{2}+312^{2} \quad\left[=1.52 \times 10^{6}\right]$ Division of sum by 3 even if $\frac{935+743+312}{3} \quad\left[=663 \mathrm{~m} \mathrm{~s}^{-1}\right]$ ($\begin{equation*} C_{\mathrm{rms}}=712 \mathrm{~m} \mathrm{~s}^{-1}(1)[\mathrm{no} \mathrm{ecf}] \tag{1} \end{equation*}$ I. $\mathrm{T}=\frac{p V}{n R}$ (1) [transposition at any stage] $\begin{equation*} T=301 \mathrm{~K} \text { or }\left\{\frac{100 \times 10^{3} \times 1.5 \times 10^{-3}}{0.050 \times 8.31}=300 \mathrm{~K} \text { or } 301 \mathrm{~K}\right\} \tag{1} \end{equation*}$ II. $N=3.6 \times 10^{22}$ III. $\quad \mathrm{rmm}=\frac{2.4}{0.0600}(1)$ [award mark even if 2.4×10^{-5} used] $=40(1)$ [NB no unit penalty]	$\begin{equation*} 3 \tag{1} \end{equation*}$ 3 2 2
	(b)	(i) (ii) (iii) (iv)	Attempt to find area under $\mathrm{AB} /$ use of $p \Delta V$ [or by implication] (1) 100 J (1) 250 J [e.c.f.] [U falls by 150 J and because the volume doesn't change] no work involved / $Q=\Delta U(1)$	2

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline \multirow[t]{5}{*}{5.} \& \multirow[t]{2}{*}{(a)} \& (i) \& \begin{tabular}{l}
I. ...Ellipse stated and shown (1) ...with star at one focus stated or shown (1) \\
II. Faster when closer to the star (1) \\
Equal areas in equal intervals of time stated and shown (1)
\end{tabular} \& 2 \\
\hline \& \& (ii) \& \begin{tabular}{l}
I. \(\frac{G M m}{r^{2}}=\frac{m v^{2}}{r} \quad\left[\right.\) Accept \(\left.\frac{G M}{r^{2}}=\frac{v^{2}}{r}\right]\) [\(\frac{G M m}{r^{2}}=m r \omega^{2}\) acceptable only if \(\omega=\frac{v}{r}\) explicitly involved, with clear algebra] \\
II. Planet wouldn't orbit centre of star / planet [and star] orbit centre of mass [or equiv.] (1) \\
We'd need \(\frac{G M m}{d^{2}}=\frac{m v^{2}}{r} \quad\) [in which \(\left.\mathrm{d} \neq r\right]\) (1) [or equivalent]
\end{tabular} \& 2 \\
\hline \& (b) \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
I. \(\quad v=c \frac{\Delta \lambda}{\lambda}\) with evidence of correct use (1) [e.g. substitutions with no more than numerical slips] \\
\(v_{\mathrm{A}}=9.5[1] \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}\), and \\
\(v_{\mathrm{B}}=5.3[0] \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}(1)\) \\
II. \(\bar{v}=7.4 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}\) \\
III. \(\quad v_{\text {rot }}=2.1 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}\)
\end{tabular} \& \[
\begin{aligned}
\& 2 \\
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline \& (c) \& \& \begin{tabular}{l}
I. \(\quad M=\frac{v^{2} r}{G}(1)\) [transposition at any stage] \\
Substitution of \(v, r\) pair from dotted graph (1) \(M=1.1 \times 10^{41} \mathrm{~kg}(1)\) [e.c.f on slips in reading dotted graph] Slips in powers of 10 penalised by only 1 mark. \\
II. Any \(2 \times\) (1) from Mass larger than \(1.1 \times 10^{41} \mathrm{~kg} /\) actual mass large than theoretical \([\) or \(M](\checkmark)\) \(v=\sqrt{\frac{G M}{r}}\) assumes the mass is central \((\checkmark)\) Mass distributed [however expressed] (\(\checkmark\))
\end{tabular} \& 3

2

\hline \& \& \& \& 18

\hline
\end{tabular}

Question			Marking details	Marks
9	(a)(b)	(i) (ii)	I. Studied reflected light (from glass plate) (1) Reflection from $2^{\text {nd }}$ plate depends on orientation (not just angle of inc.) / Light asymmetrical about direction of travel / Reflected light polarised (1) II. Developed wave theory mathematically (1) accounted for polarisation by reflection or double refraction or diffraction patterns of various obstacles or why we cannot see around corners (1) - Requires stiff (or solid) medium (where light travels) (1) - which would also support longitudinal waves but not observed or would prevent movement of 'ordinary' objects. (1)	2
		(i) (ii) (iii) (iv)	Magnetic fields - rotating vortices (1) Electric fields - stress (or strain) in vortex material (1) Density and stiffness His ether (or equations) predicted $c=\sqrt{\frac{1}{\varepsilon_{0} \mu_{0}}}(1)$ Experiment confirmed this (within uncertainties).(1) Oscillating E and B fields. (1) E and B at right angles to each other and to the propagation direction. (1)	$\begin{aligned} & 2 \\ & 1 \end{aligned}$ 2
	(c)	(i) (ii)	Principle of Relativity understood (either by statement or implied) (1) Not consistent as laws [of E-M] would have special form in this frame (also implies first mark). (1) I. $\quad 6.39 \mu \mathrm{~s}$ II. $\Delta \tau=\Delta t \sqrt{1-\frac{v^{2}}{c^{2}}}(1)=0.625 \mu \mathrm{~s}(1)[65.3 \mu \mathrm{~s} \rightarrow 0$ marks $]$ III. $\quad 0.706 \mu \mathrm{~s}(1)$ approximately 10% (or 13%) out (1) [or any other correct and relevant remark]	$\begin{aligned} & 2 \\ & 1 \end{aligned}$ 2 2
				[20]

Question			Marking details	Marks
$\begin{aligned} & 10 \\ & \mathrm{~A} \end{aligned}$	(a) (b) (c) (d)	(i) (ii) (i) (ii) (iii)	LCS - largest plastic deformation QAS - highest breaking stress All are same / similar from initial gradients. HCS has greater strength and stiffness (1) Carbon in (crystal) lattice (1) Hinders/opposes/stops dislocation movement (1) Hence more opposition to plastic deformation in HCS (1) $\begin{aligned} & \frac{1}{2} m v^{2}=\frac{1}{2} F x(1) \times 1 / 4(1) \\ & m=\rho A l(1)+\text { convincing algebra }(1) \\ & \varepsilon=0.002(1) \\ & v=\frac{1}{2} \sqrt{\frac{700 \times 10^{6} \times 0.002}{8000}}=6.6 \mathrm{~m} \mathrm{~s}^{-1}[\text { answer }](1) \end{aligned}$ Accept either LCS or QAS with sensible reason: e.g. LCS has a higher breaking speed (1) because the area under the graph is greater / ε at breaking is much bigger (1) or QAS has a higher speed (1) because the area under the graph in the elastic region is bigger (1)	1 4 4 2 2
B	(a) (b) (c)		$2.6 \rightarrow 2.7 \mathrm{GPa}$ from the graph (1) $8.3 \rightarrow 8.65 \mathrm{~kg}$ (1) Thin fibres have fewer surface imperfections (1) Very thin fibres have no surface imperfections (1) Thin glass fibres encased in resin / epoxy / plastic material	2 2 1 [20]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks \\
\hline \multirow[t]{6}{*}{11} \& (a) \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
Same shape, below and longer minimum \(\lambda_{0}(1)\) \\
peaks in same place (1) \\
Peaks/spikes/line spectrum move.
\[
\begin{aligned}
\& e V=\frac{h c}{\lambda}(1) \\
\& \lambda=1.66 \times 10^{-11} \mathrm{~m}(1) \\
\& P=I V=9375 \mathrm{~W}(1) \\
\& 99.5 \% \text { heat }=0.995 \times 9375=9328 \mathrm{~W}
\end{aligned}
\] \\
Or comment that roughly all 9375 W dissipated as heat.
\end{tabular} \& 2
1

2

\hline \& (b) \& \& | CT detector(s) rotate (1) about patient / analysis point. |
| :--- |
| Multiple detectors output to computer (1) |
| Series of 2D images obtained or 3D image obtained (1) | \& 3

\hline \& (c) \& \& | Radio waves [2-100 MHz] (1) |
| :--- |
| Resonate or Same/match frequency of [hydrogen] nuclear rotation [or precession]. (1) |
| Causes them to flip/change (1) [Not just: change spin] | \& 3

\hline \& (d) \& | (i) |
| :--- |
| (ii) | \& crystal deforms / vibrates [when alternating p.d. applied]

$$
\begin{aligned}
& \frac{\Delta \lambda}{\lambda}=\frac{2 v}{c}(1) \\
& v=0.9 \mathrm{~m} \mathrm{~s}^{-1}(1) \text { [e.c.f. on missing factor of 2] }
\end{aligned}
$$ \& 1

2

\hline \& (e) \& (i)

(ii) \& | Mention of free radicals (1) [or equivalent, e.g. produces chemicals/ions/atoms which react/are highly reactive]. |
| :--- |
| Damages DNA/cells/molecules (1) |
| Absorbed dose = energy (absorbed) per unit mass. |
| Dose equivalent $=$ absorbed dose $\times \mathrm{Q}$ [uality] factor. | \& \[

2
\]

\hline \& \& \& \& [20]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks \\
\hline \multirow[t]{6}{*}{12} \& (a) \& \multirow[t]{6}{*}{\begin{tabular}{l}
(i) \\
(ii)
\end{tabular}} \& \[
\begin{aligned}
\& \text { Power }=\text { solar constant } \times \text { area [or by impl.] (1) } \\
\& \quad=1.0686 \times 10^{10} \mathrm{~W} / 1.0686 \times 10^{7} \mathrm{~kW} / 10.7 \mathrm{GW} \text { or equiv (1). } \\
\& \left.P=\sigma A T^{4} \text { understood [accept } 5.67 \times 10^{-8} \times \mathrm{A} \times 5778\right]- \text { i.e. } 2 \text { terms } \\
\& \text { identified although missing }(1) \\
\& P=4 \pi r^{2} \text { quoted (1) } \\
\& P=3.85 \times 10^{26} \mathrm{~W}(1) \\
\& \text { Solar constant }=\frac{3.85 \times 10^{26}}{4 \pi \times\left(1.496 \times 10^{11}\right)^{2}}\left[=1368 \mathrm{~W} \mathrm{~m}^{-2}\right]
\end{aligned}
\] \& 2

4

\hline \& (b)
(c) \& \& ```
Hours in one year $=24 \times 365[.25]$ [or by impl.] (1)
Total units $=1.0686 \times 10^{7} \times 24 \times 365 \times 0.4$ [or by impl.] (1)
Money $=$ units $\times 0.2=£ 7.5$ billion $/ 7.5 \times 10^{11} \mathrm{p} / £ 7.489 \times 10^{9}(1)$
Volume $=$ area \times thickness [or by impl.] (1)
Mass $=$ density \times volume [or by impl.] (1) [manip]
Mass $=4.95 \times 10^{6} \mathrm{~kg}(1)$

``` & \\
\hline & (d) & & \begin{tabular}{l}
\(4.95 \times 10^{6} \div 2500=198\) missions [or by impl.] (1) [ecf from (c)] \\
\(\times 350 \times 10^{6}=£ 69.3\) bn [or equiv.] (1)
\end{tabular} & 2 \\
\hline & (e) & & Heat engines inefficient [or by impl.] (1) Since \(1-\frac{T_{1}}{T_{2}} \simeq 1-\frac{300}{400} \simeq 0.25\) (1) "which is poor" implies first mark. NB. \(T_{2}\) in range \(373-1700 \mathrm{~K}\) and \(T_{1}\) in range \(273-900 \mathrm{~K}\left[<T_{2}\right]\) & 2 \\
\hline & (f) & & \begin{tabular}{l}
Reasonable since costs recovered in \(9 / 10\) years (1) (ignoring time for 200 shuttle missions) \\
+ Any \(3 \times(1)\) good points: \\
- Not weather dependant \(\checkmark\) \\
- Solar power at night \(\checkmark\) \\
- Less/no atmospheric absorption by microwaves \(\checkmark\) \\
- Time for 200 shuttle missions \(\checkmark\) \\
- Shuttle program ended \(\checkmark\)
\end{tabular} & 4 \\
\hline & & & & [20] \\
\hline
\end{tabular}

\section*{WJEC}

245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk```

