1. The time in minutes that Elaine takes to checkout at her local supermarket follows a continuous uniform distribution defined over the interval $[3,9]$.

Find
(a) Elaine's expected checkout time,
(b) the variance of the time taken to checkout at the supermarket,
(c) the probability that Elaine will take more than 7 minutes to checkout.

Given that Elaine has already spent 4 minutes at the checkout,
(d) find the probability that she will take a total of less than 6 minutes to checkout.
$X=$ time taken to checkout at he supermarket $X \sim U[3,9]$
a) $E(X)=\frac{(a+b)}{2}=\frac{3+9}{2}=6$ mons
b) $\operatorname{Var}(x)=\frac{(b-a)^{2}}{12}=\frac{(9-3)^{2}}{12}=\frac{36}{12}=3 \mathrm{mins}$

2. David claims that the weather forecasts produced by local radio are no better than those achieved by tossing a fair coin and predicting rain if a head is obtained or no rain if a tail is obtained. He records the weather for 30 randomly selected days. The local radio forecast is correct on 21 of these days.

Test David's claim at the 5% level of significance.
State your hypotheses clearly.
$X=$ no. of times the forecast is correct

$$
H_{0}: p=0.5 \quad H_{1}: p>0.5
$$

under $H_{0} \quad X \sim B(30,0.5)$

$$
\begin{aligned}
P(x \geqslant 21) & =1-P(x \leq 20) \\
& =1-0.9786 \\
& =0.0214
\end{aligned}
$$

\therefore since $2.14 \%<5 \%$ reject Ho.
Therefore there is evidence to say that the weather forcasts are better han hose produced by tossing
a coin.
3. The probability of a telesales representative making a sale on a customer call is 0.15

Find the probability that
(a) no sales are made in 10 calls,
(b) more than 3 sales are made in 20 calls.

Representatives are required to achieve a mean of at least 5 sales each day.
(c) Find the least number of calls each day a representative should make to achieve this requirement.
(d) Calculate the least number of calls that need to be made by a representative for the probability of at least 1 sale to exceed 0.95
4. A website receives hits at a rate of 300 per hour.
(a) State a distribution that is suitable to model the number of hits obtained during a 1 minute interval.
(b) State two reasons for your answer to part (a).

Find the probability of
(c) 10 hits in a given minute,
(d) at least 15 hits in 2 minutes.

The website will go down if there are more than 70 hits in 10 minutes.
(e) Using a suitable approximation, find the probability that the website will go down in a particular 10 minute interval.
a) Poisson distribution
$X=n 0$ of hits $X_{\sim} P_{0}(S)$
b) - hits occur at a constant rake

- hits occur independently
- hits occur sing y in time etc.
c) $P(X=10)=\frac{e^{-5} 5^{10}}{10!}=0.0181(4 d p)$

$$
\begin{aligned}
\begin{aligned}
X \sim P_{0}(10) \\
P(X \geqslant 15)
\end{aligned} & =1-P(x \leq 14) \\
& =1-0.9165=0.0835
\end{aligned}
$$

Question 4 continued
e)

$$
\begin{aligned}
& X \sim P_{0}(50) \\
& X \approx Y \sim N\left(50, \sqrt{50^{2}}\right) \\
& \begin{aligned}
P(x>70)=P(x>71) & \approx P(y \geqslant 70.5) \\
& =P\left(z \geqslant \frac{70.5-50}{\sqrt{50}}\right) \\
& =P(z \geqslant 2.899) \\
& =1-\Phi(2.90) \\
& =1-0.9981 \\
& =0.0019
\end{aligned}
\end{aligned}
$$

