Question Number	Scheme		Marks
1. (a)	The list is not in alphabetical order.		B1 (1)
(b)		$$	M1 A1 A1 $\mathrm{A} 1=\mathrm{B} 1$ (4)
(c)	Pivot $1=\left[\frac{1+10}{2}\right]=6$ Jenny reject 1-6 Pivot $2=\left[\frac{7+10}{2}\right]=9$ Richard reject 9-10 Pivot $3=\left[\frac{7+8}{2}\right]=8$ Merry reject 8 Pivot $4=7$ Kim - name found		M1 A1 A1ft A1 (4)

Question Number	Scheme	Marks
2. (a)(i) (a)(ii)	A tree is a connected graph with no cycles/circuit A minimum spanning tree is a tree that contains all vertices and the total length of its arcs (weight of tree) is as small as possible.	B1 B1 B1 (3)
(b)	$\mathrm{AB}, \mathrm{DE}, \mathrm{BC} ;\left\{\begin{array}{c}\text { reject } \mathrm{AC} \\ \mathrm{BD}\end{array}\right\}$ reject BE , reject CE, use either EF or CF	$\begin{align*} & \text { M1; A1 } \\ & \text { A1 } \tag{3} \end{align*}$
(c)		B1
(d)	No, there are two solutions since either EF or CF should be used.	B1 (1)

Question Number	Scheme	Marks
(a)	$\begin{aligned} & 6 x+5 y \leq 60 \\ & 2 x+3 y \geq 12 \\ & 3 x \geq 2 y \\ & x \leq 2 y \end{aligned}$	B2,1,0
		(2)
(b)	Drawing objective line $\{(0,3)(1,0)\}$ Testing at least 2 points Calculating optimal point Testing at least 3 points$\left(7 \frac{1}{17}, 3 \frac{9}{17}\right)=\left(\frac{120}{17}, \frac{60}{17}\right) \approx(7.06,3.53)$	M1 A1 DM1 A1 awrt
		(4)
(c)	$24 \frac{12}{17}=\frac{240}{17} \approx 24.7(\mathrm{awrt})$	B1
(d)	$(6,4)$	B1
		(1) 8
4. (a)	$\begin{aligned} & {[\text { Given } \mathrm{A}-3=\mathrm{R}-4=\mathrm{C}-5 \text {] }} \\ & \mathrm{A}-1=\mathrm{H}-2 \\ & \mathrm{~A}-1=\mathrm{H}-3=\mathrm{R}-4=\mathrm{C}-5 \end{aligned}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$
		(3)
(b)	$\mathrm{A}=3, \mathrm{C}=5, \mathrm{H}=1,(\mathrm{~J}$ unmatched $), \mathrm{R}=4$	B1
		(1)
(c)	Alternating path: $\mathrm{J}-4=\mathrm{R}-3=\mathrm{A}-1=\mathrm{H}-2$ Change status: $\mathrm{J}=4-\mathrm{R}=3-\mathrm{A}=1-\mathrm{H}=2$$\mathrm{A}=1, \mathrm{C}=5, \mathrm{H}=2, \mathrm{~J}=4, \mathrm{R}=3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		A1
		(3)
		7

Question Number	Scheme	Marks
5. (a)	$\begin{aligned} & \mathrm{AC}+\mathrm{DF}=9+13=22 \leftarrow \\ & \mathrm{AD}+\mathrm{CF}=16+8=24 \\ & \mathrm{AF}+\mathrm{CD}=17+7=24 \end{aligned}$ Repeat arcs AC, DG and GF	M1 A1 A1 A1 A1ft (5)
(b)	E.g. ADCACGDGFGECBEFBA Length of route $=98+22=120(\mathrm{~km})$	$\begin{aligned} & \text { B1 } \\ & \text { B1 ft } \end{aligned}$
(c)	CF (8) is the shortest link between 2 odd nodes excluding D Repeat CF (8) since this is the shortest path excluding D. We finish at A Length of route $=98+8=106(\mathrm{~km})$	\qquad M1 A1ft A1ft
6. (a)	ACDFEGH Length 71 (km)	M1 A1 (ABCD) A1ft (EF) A1ft (GH) A1 A1ft
(b)	$\begin{array}{llll} \text { E.g. } & 71-12=59 \mathrm{GH} & 49-10=39 \mathrm{FE} & 24-13=11 \mathrm{CD} \\ & 59-10=49 \mathrm{EG} & 39-15=24 \mathrm{DF} & 11-11=0 \mathrm{AC} \end{array}$ Or Trace back from H including arc XY if (Y already lies on the path and) the difference of the final values of X and Y equals weight of arc XY .	B2,1,0
(c)	ACBEGH Length 72 (km)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
		(2) 10

Question Number	Scheme	Marks
7. (a)	Activity Proceeded by Activity Proceeded by Activity Proceeded by (A) $(-)$ E A B I C D E (B) $(-)$ (F) (B) J C D E C A B (G) (B) K F H I (D) (B) H C D L F G H I	B3,2,1,0
(b)		M1 A1 M1 A1
(c)	Critical activities are B D J H L	M1 A1 (2)
(d)		M1 A1 M1 A1

Question Number	Scheme	Marks
7. (e)	E.g. Between time 7 and 16, 3 workers could do $3 \times 9=27$ days work. Activities C, D, E, F, G, H, I and 4 days of J need to be done This totals 31 days work. So it is not possible to complete the project with three workers. OR If three workers are used three activities H, J and I need to happen at time 13.5, this reduces the float on F and G, meaning that at 10.5 D, C, F and G need to be happening. Our initial assumption is incorrect hence four workers are needed.	B3,2,1,0
	Let x be the number of type A radios and y be the number of type B radios. $\left(\begin{array}{ll}\text { Maximise P }=) 15 x+12 y \\ \text { Subject to } \\ x \geq 50 \\ \frac{1}{5}(x+y)<x \quad(\text { accept } \leq)[y<4 x] \\ 5\end{array}\right.$ 16 8. $3 x+2)>x \quad($ accept $\geq)[2 y>3 x]$ $y \geq 0$	B1

