Decision Mathematics D1 (6689)

Practice paper B mark scheme

Question number	Scheme	Marks
1. (a) (b) (c) (d)	A graph consisting of two distinct sets of vertices X and Y in which... arcs can only join a vertex in X to a vertex in Y . A path from an unmatched vertex in X to an unmatched vertex in Y... ..which alternately uses arcs in/not in the matching. The (1-1) matching / pairing of some elements of X with elements of Y. A 1-1 matching between all elements of X onto Y	B1 B1 (2) B1 B1 (2) B1 (1) B1 (1) (6 marks)
2. (a) (b) (c)	To obtain a complete matching the number of vertices on each side must be equal. E.g $\quad \mathbf{L}-3=\mathbf{H}-5=\mathbf{J}-1 \mathrm{a}=\mathbf{A}-4$ c.s. $\mathbf{L}=3-\mathbf{H}=5-\mathbf{J}=1 \mathrm{a}-\mathbf{A}=4$ $\begin{array}{lll} \mathbf{A}=4 & \mathbf{H}=5 & \mathbf{L}=3 \\ \mathbf{E}=16 & \mathbf{J}=1 \mathrm{a} & \mathbf{M}=2 \end{array}$ \mathbf{H} and \mathbf{L} can now both only do 3. So a complete matching is not possible.	$\mathrm{B} 2,1,0$ $\mathrm{M} 1, \mathrm{~A} 1$ A1 (3) B2,1,0 (2) (7 marks)
3. (a)	Repeat $B D$ and $F G$ Route e.g. $G A B C \underline{D B} \overline{F E} \overline{D B} G \underline{F G}$ Length $=8.9+2.2=11.1 \mathrm{~km}$ Only now need to repeat BF of length $1.5<2.2$ Length $=8.9+1.5=10.4 \mathrm{~km}$ saving $0.7(\mathrm{~km})$	M1 A1 A1 (3) B1 M1 A1 (3) M1 A1 ft A1 (3) (9 marks)

Question number	Scheme	Marks
4. (a) (b)	Reference to K, J, G and L - depends on J and G, but L depends on G only. Both M and N must be uniquely represented in terms of events.	M1 A1 A1 B1 (4) B2, 1, 0 B1 (3) (7 marks)
5. (a)		

Question number	Scheme	Marks
(d)	Point testing: Test corner points in feasible regions Find profit at each and select point yielding maximum Profit line: Draw profits lines Select point on profit line furthest from the origin)
(e)	Using a correct method	M1
	Make 6 Oxford and 7 York	A1
	$\text { Profit }=£ 5300$	A1 (3)
(f)	The line $3.5 x+4 y=49$ passes through $(6,7)$	M1
	So reduce finishing by $\underline{7}$ hours	A1ft A1 (3)
		(15 marks)

