

Friday 13 January 2012 - Morning

A2 GCE MATHEMATICS

4726 Further Pure Mathematics 2

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4726
- List of Formulae (MF1)

Other materials required:

Scientific or graphical calculator

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer **Book**. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part guestion on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

- 1 Given that $f(x) = \ln(\cos 3x)$, find f'(0) and f''(0). Hence show that the first term in the Maclaurin series for f(x) is ax^2 , where the value of *a* is to be found. [4]
- 2 By first completing the square in the denominator, find the exact value of

$$\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{4x^2 - 4x + 5} \, \mathrm{d}x \, .$$

[5]

[7]

3 Express $\frac{2x^3 + x + 12}{(2x-1)(x^2+4)}$ in partial fractions.

4

The diagram shows the curve $y = e^{-\frac{1}{x}}$ for $0 < x \le 1$. A set of (n-1) rectangles is drawn under the curve as shown.

- (i) Explain why a lower bound for $\int_0^1 e^{-\frac{1}{x}} dx$ can be expressed as $\frac{1}{n} \left(e^{-n} + e^{-\frac{n}{2}} + e^{-\frac{n}{3}} + \dots + e^{-\frac{n}{n-1}} \right).$ [2]
- (ii) Using a set of *n* rectangles, write down a similar expression for an upper bound for $\int_0^1 e^{-\frac{1}{x}} dx$. [2]
- (iii) Evaluate these bounds in the case n = 4, giving your answers correct to 3 significant figures. [2]
- (iv) When $n \ge N$, the difference between the upper and lower bounds is less than 0.001. By expressing this difference in terms of *n*, find the least possible value of *N*. [3]

- 5 It is given that $f(x) = x^3 k$, where k > 0, and that α is the real root of the equation f(x) = 0. Successive approximations to α , using the Newton-Raphson method, are denoted by $x_1, x_2, \dots, x_n, \dots$.
 - (i) Show that $x_{n+1} = \frac{2x_n^3 + k}{3x^2}$. [2]
 - (ii) Sketch the graph of y = f(x), giving the coordinates of the intercepts with the axes. Show on your sketch how it is possible for $|\alpha x_2|$ to be greater than $|\alpha x_1|$. [3]

It is now given that k = 100 and $x_1 = 5$.

- (iii) Write down the exact value of α and find x_2 and x_3 correct to 5 decimal places. [3]
- (iv) The error e_n is defined by $e_n = \alpha x_n$. By finding e_1, e_2 and e_3 , verify that $e_3 \approx \frac{e_2^2}{e_1^2}$. [3]
- 6 (i) Prove that the derivative of $\cos^{-1}x$ is $-\frac{1}{\sqrt{1-x^2}}$. [3]

A curve has equation $y = \cos^{-1}(1 - x^2)$, for $0 < x < \sqrt{2}$.

(ii) Find and simplify $\frac{dy}{dx}$, and hence show that

$$\left(2-x^2\right)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = x\frac{\mathrm{d}y}{\mathrm{d}x} \ .$$

[5]

- 7 (i) Given that $y = \sinh^{-1} x$, prove that $y = \ln \left(x + \sqrt{x^2 + 1} \right)$. [3]
 - (ii) It is given that x satisfies the equation $\sinh^{-1} x \cosh^{-1} x = \ln 2$. Use the logarithmic forms for $\sinh^{-1} x$ and $\cosh^{-1} x$ to show that

$$\sqrt{x^2 + 1} - 2\sqrt{x^2 - 1} = x \; .$$

Hence, by squaring this equation, find the exact value of x.

[5]

[Questions 8 and 9 are printed overleaf.]

The diagram shows two curves, C_1 and C_2 , which intersect at the pole *O* and at the point *P*. The polar equation of C_1 is $r = \sqrt{2}\cos\theta$ and the polar equation of C_2 is $r = \sqrt{2}\sin 2\theta$. For both curves, $0 \le \theta \le \frac{1}{2}\pi$. The value of θ at *P* is α .

(i) Show that
$$\tan \alpha = \frac{1}{2}$$
. [2]

(ii) Show that the area of the region common to C_1 and C_2 , shaded in the diagram, is $\frac{1}{4}\pi - \frac{1}{2}\alpha$. [7]

(i) Show that
$$\tanh(\ln n) = \frac{n^2 - 1}{n^2 + 1}$$
. [2]

It is given that, for non-negative integers n, $I_n = \int_0^{\ln 2} \tanh^n u \, du$.

(ii) Show that
$$I_n - I_{n-2} = -\frac{1}{n-1} \left(\frac{3}{5}\right)^{n-1}$$
, for $n \ge 2$. [3]

- (iii) Find the value of I_3 , giving your answer in the form $a + \ln b$, where a and b are constants. [4]
- (iv) Use the method of differences on the result of part (ii) to find the sum of the infinite series

$$\frac{1}{2}\left(\frac{3}{5}\right)^2 + \frac{1}{4}\left(\frac{3}{5}\right)^4 + \frac{1}{6}\left(\frac{3}{5}\right)^6 + \dots$$
 [2]

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

9