CORE BIOLOGY PRACTICALS

You will need to know these practicals as the exam board may ask you questions based on them. Below is a summary of each one.

Name of practical and	Other variables to	Other equipment	Method and outcome	Possible evaluation issues
independent & dependent	be controlled			
Effect of caffeine on Daphnia heart rate Independent: caffeine concentration Dependent: heart rate of Daphnia	 Temperature Volume of solutions Stress of Daphnia Size of Daphnia Time of acclimatisation 	Microscope, counter, cavity slide, dropping pipettes, stop clock, distilled water, test tubes, stop clock	Method: Remove 1 Daphnia and place in cavity slide. Remove pond water and replace with distilled water. Leave for 5mins to acclimatise then observe & count heart rate under microscope for 30s, multiply number by 2 to calculate beats/min. Repeat with 2 more Daphnia. Repeat again, this time with small concentration of caffeine solution in place of distilled water. Carry out for 5 concentrations of caffeine = 3 repeats at 3 concentrations. Outcome: as caffeine concentration increased, heart rate increased	 Ensuring Daphnia were same size If left too long under microscope, temp increases (due to lamp) = increased heart rate Ensuring enough data is collected Too high concentration of caffeine kills Daphnia Counting of heart beat can be inaccurate
Measuring the content of Vitamin C in fruit juice Independent: fruit juice Dependent: volume of juice required to decolourise 1cm ³ of DCPIP	 Temperature Concentration of DCPIP solution (1%) Shake each tube same number of times Same end point colour. i.e. until the blue colour of DCPIP just disappears 	1% DCPIP solution, 1% vitamin C solution, range of fruit juices, test tubes/conical flasks, beakers, pipette accurate to 1cm ³ , burette, safety goggles	Method: pipette 1cm^3 blue DCPIP into test tube. Using burette (or accurate pipette) add 1% vitamin C solution drop by drop. Shake tube gently after each drop. Continue until the blue colour just disappears. Record volume of solution needed to decolourise the DCPIP. Repeat further 2 times and calculate mean result. Repeat procedure with different fruit juices. Calculations: 1cm^3 of 1% vitamin C solution contains 10mg Vitamin C, therefore <u>mass</u> <u>in 1cm³</u> = 10mg x volume of 1% vitamin C to decolourise 1cm^3 of DCPIP. <u>Mass in sample</u> = mass of vitamin C to decolourise 1cm^3 DCPIP \div volume of sample required to decolourise 1cm^3 DCPIP	 Difficulty in controlling temperature Amount of shaking (too much adds oxygen which will slightly restore the DCPIP to blue) End point difficult to judge as needs to be just when blue colour disappears especially in highly coloured juices Some loss of solution when transferring from one beaker to another Accuracy of measuring equipment
The effect of temperature on cell membranes Independent: temperature of water Dependent: % transmission of light through resulting solution	 Volume of distilled water Time left in water Size of beetroot piece 	Raw beetroot, size 4 cork borer, white tile, knife, ruler, beaker, forceps, water baths, boiling tubes, thermometer, colorimeter & cuvettes, stop clock, distilled water, syringe	Method: using cork borer and knife, cut pieces of beetroot into 1 cm length cylinders. Place in distilled water overnight to remove any dye released on preparation. Wash and blot dry. Place 8 boiling tubes of distilled water into 8 water baths of different temperature. Once at temperature, add a piece of beetroot to each and leave for 30 mins. Remove beetroot and shake tubes to disperse dye. Set colorimeter to % absorbance on blue/green filter. Calibrate using distilled water in a cuvette first then add 2cm3 of beetroot solution from the first temp to a new cuvette. Place into colorimeter to read % absorbance. Repeat for all other pieces. Calculations & outcome: to calculate % transmission = 100-%absorbance. As temperature increased, % transmission slightly increased to a point at which it greatly increased due to membrane molecules gaining more heat energy, vibrating more to a point where the vibrations caused large gaps in the membrane enabling the release of dye also proteins in membrane denatured leaving large pores.	 Some beetroot may have skin on affecting surface area. Difficulty in maintaining temperature Accurate reading of the colorimeter Accurate size of beetroot From the different parts of the root Ensuring same amount of time at the different temperatures
The effect of changing enzyme concentration on rate of reaction. Independent: concentration of enzyme dependent: time taken for enzyme to break down substrate	 Temperature Volume of enzyme Volume of substrate Concentration of substrate pH 	Protease e.g.1% trypsin, casein solution, small beakers, thermometer, distilled water, syringes, stopclock, large beaker	Method: make up different concentrations of enzyme using distilled water. Ensure different syringes for different chemicals to prevent cross contamination. Set up water bath for temperature to keep constant. Place 1 test tube of 5cm^3 casein solution into water bath alongside second tube containing 2cm^3 of 0.2% trypsin. Allow to acclimatise for 3 mins so that at same temperature then add trypsin to casein, start stop clock. Time how long it takes for casein solution to turn transparent. (mark a 'X' on the other side of tube, as soon as seen through solution stop clock). Repeat a further 2 times then repeat for next concentration. Calculations & outcome: rate = $1 \div \text{time}$ As concentration of enzyme increases, rate of reaction increases until a plateau point where all enzyme has metabolised all substrate immediately.	 Maintaining constant temperature Accurately making up the different concentrations Identifying end point consistently Difficult to see the cross through the solution
		Using catalase in yeast and hydrogen peroxide	Method: using first concentration of yeast solution, acclimatise to desired temperature alongside separate tube of hydrogen peroxide. Set up gas syringe and set to 0. Quickly add peroxide to yeast and attach gas syringe. Read off the volume of oxygen gas produced every 10 mins until 3 readings are the same. Repeat 3 times for each concentration of yeast solution. Calculations & outcome: rate = initial rate of reaction = gradient at steepest point from graphs of volume against time for each concentration. Outcome as protease above	 Attaching syringe can be slower allowing loss of gas Inaccurate reading of gas syring Inaccurate reading of syringes in making up dilutions Reaction going too quickly to read

Name of practical and	Other variables to	Other equipment	Method and outcome	Possible evaluation issues
independent & dependent	be controlled			
variables				
		Garlic roots, sharp knife.	Method: place test tube of 2cn3 1M HCl into 60°C waterbath. Cut off 1-2cm of root	Resolution of microscope
Observina Mitosis		1M hydrochloric acid.	tip from garlic root. Put in watch glass containing 2cm ³ of acetic alcohol for at least 12	Human error in counting numbers of cells
J		Ethanoic alcohol. Orcein	mins. Remove then place into another watch glass containing 5cm ³ ice cold distilled	 Enough time in the solutions to enable
Chromosomes stained blue using		ethanoic stain. ice-cold	water. Leave for 4-5 mins, then remove and dry. Place tips into heated HCl for 5mins	successful maceration or staining
orcein ethanoic stain		distilled water. water	then repeat process again by placing tips back into acetic alcohol etc. Tips will be very	successial maceration of stammig.
		bath @ 60°C. 2 watch	fragile at this point. Transfer 1 tip to microscope slide, cut 4-5mm from growing tip	
		glasses, test tube, 2	(site of mitosis) and keep the tip. Gently break up (macerate) with mounted needle.	
		pipettes, microscope	add 1 small drop of orcein ethanoic stain and leave for 2 mins. Add coverslip and blot	
		slides, forceps, mounted	with filter paper. View under microscope and identify the stages of mitosis.	
		needle, filter paper,	Calculations: percentage of cells in each stage of mitosis	
		microscope with mag	Mitotic index: number of cells containing visible chromosomes + total number of	
		x100 & x400	cells in the field of view	
		Seeds of white mustard,	Method: sprinkle seeds on damp sponge and allow to germinate. Use when just	 Unwanted pathogens growing in the gel as it
Totipotency & Tissue Culture		agar, distilled water,	starting to unfold their cotyledons (seed leaves). Make up Agar gel and pour 2cm	is a good source of water and nutrients
		damp sponge, cling film,	height of gel into McCartney bottles and allow to set. With sharp scissors, cut the tops	 Wrong part of the plant cut and inserted into
		McCartney bottles,	off just below the shoot apex (including the cotyledons). This is called an explants.	gel.
		weighing scales, plastic	Push the stem of the explant into the gel (making sure cotyledons don't touch agar)	
		tray, 250ml beaker, glass	cover with cling film and place on sunny windowsill. Observe over 10 days.	
		rod, scissors, sunny	Outcome: explant grows roots and leaves continue to grow. You need to be able to	
		window sill	explain why they are covered in cling film and why they continue to grow even when	
			covered. Also why they shouldn't be opened again.	
	 Length of fibre 	Stems of stinging nettles	Method: plant material should be left to soak in a bucket of water for about a week in	 Maintaining length of fibres
The strength of plant fibres	 Size of each 	or celery, bucket, gloves,	order for the fibres to be easily extracted (called retting). Or celery stalks should be	 Ensuring consistency when twisting or plaiting
	individual mass	paper towels, clamp	left in beaker of coloured water in order for fibres to be easily seen and pulled out.	 Using fibres of the same age (as they get older
Independent: source and type of		stands, slotted masses	Once fibres removed, connect between 2 clamp stands and gradually add mass in the	they become more brittle)
fibre		and holders, white tile,	middle until the fibre snaps. Try with individual fibres from different plants and	 Extracting whole fibres that are useful
Dependent: mass that can be		sharp knife	different ways of combining fibres eg twists and plaits. Can also compare stem to	
held			individual fibres.	
			Outcome: the more fibres combined together the stronger it is.	
	Volume of mineral	Mexican nat plantiets or	wethod: half fill a tube with the 'all nutrients present' solution. Cover the top of the	Ensuring accurate measurement of solutions
investigating plant mineral	solution	geranium leaves, 7 test	tube with foil or paramin and push down on covering so that there is a well in the	No air bubble caught in xylem of geranium
dejiciencies	Species of plant	different mineral	belo so it is in solution below. Ponost with solutions locking in nitrogen or phosphate	 possible microorganism growth in nutrient
Indonondant: minorals prosent	Size of container	solutions: oach lacking	or potassium or magnosium or calcium or lacking all Wrap all tubos in aluminium foil	solution
Dependent: nhusical	Amount of light	1 nutrient and 1	and place in tube holder on suppy window sill. Observe regularly	• Insufficient time to see an effect.
characteristics of the plant	received	containing all	Outcome: the fall outrients present plant will look healthy whereas the others will all	
		aluminium foil	have some abnormality. Make sure you know what nutrient deficiencies affect plants	
	concentration of	Agar plate seeded with	Method: make plant extract by crushing 3g of plant material with 10cm ³ industrial	Growth of unwanted microbes on agar plates
Effect of aarlic and mint on	nlant material	bacteria, plant material	denatured alcohol. Shake occasionally for 10 mins. Pinette 0.1cm3 of extract onto	due to had asentic techniques
bacterial arowth	 Jawn of bacteria on 	e.g. garlic & mint, pestle	sterile paper disc. Allow to dry on sterile petri dish. Meanwhile label agar plates with	 Not shaking extract enough to ensure enough
	petri dish	& mortar, 10cm ³	date and split into 4 sections. 1 for each type of plant extract. Place 1 disc of each	active ingredient
Independent: presence of garlic	 contamination of 	industrial denatured	extract in each quadrant of the agar plate, close and tape with hazard tape. Leave to	 Inconsistency when adding plant extract to
or mint	petri dish by other	alcohol, sterile pipette,	incubate over night and observe zone of inhibition. Carry out controls with just	paper discs.
Dependent: zone of inhibition	microbes	paper discs, sterile petri	distilled water on discs.	Contaminating controls
around disc	 same volume of 	dish, sterile forceps,	Outcome: the control discs completely covered with bacteria, some plant extracts will	 Using wrong species of bacteria for lawn
	plant material on	hazard tape, marker	create larger zones of inhibition than others, meaning they are more effective at	
	each disc	pen.	lower concentrations.	