Algebraic functions

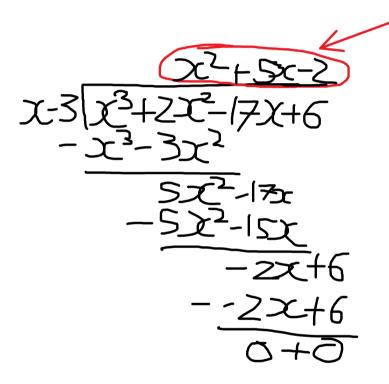
09 February 2012 13:43

• Only identical factors can be cancelled

Algebraic long division

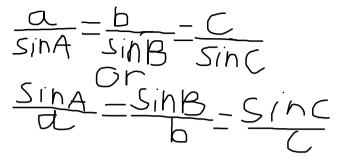
Thisisth ahsup

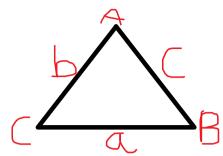
Example: Divide x³+2x²-17x+6 by (x-3)

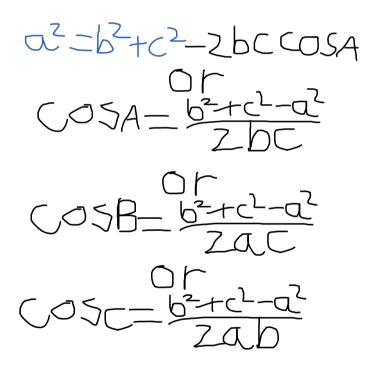


- Algebraic long division can be used to
 - Find factors
 - Find if something is a factor
 - This can be done easier by putting the factor into the equation and seeing if it equals 0 or not

27 January 2012 10:51



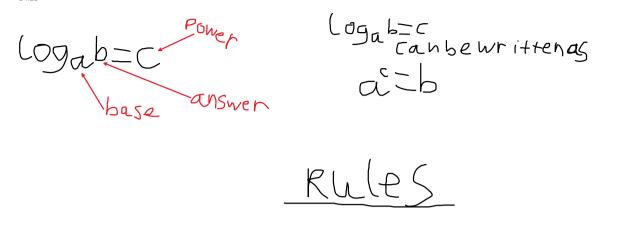


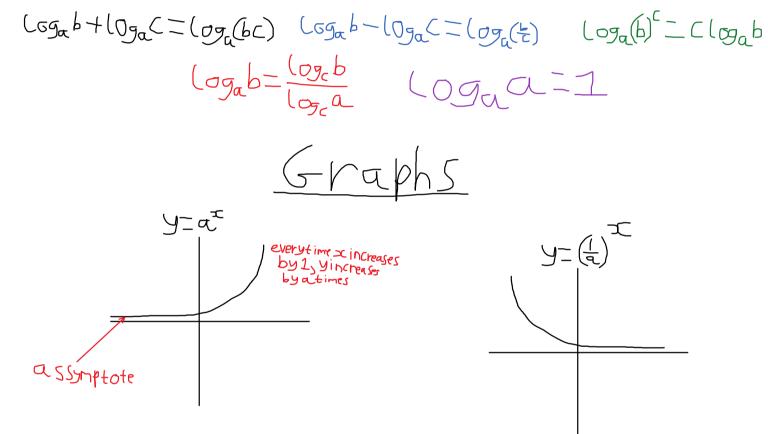


C A B

Logs and exponentials

25 January 2012 14:25





Circles 11 March 2012 0:24• $(y-a)^2+(x-b)^2=r^2$ • Origin of circle: (b, a) • Radius of circle: r • a+b=180 c+d=180c+d=180

Binomial expansion

11 March 2012 10:19

- $(a+b)^n = (_)a^nb^0 + (_)a^{n-1}b^1 + (_)a^{n-2}b^2 + (_)a^{n-3}b^3 \dots (_)a^0b^n$
 - The number in front of each term can be obtained by using the ${}^{n}\text{C}_{r}$ button
 - The n is the term on the bracket, and the r is the power on the b term
- So therefore, (a+b)⁶ expanded would be:
 - $(1)(a)^{6}(b)^{0} + (6)(a)^{5}(b)^{1} + (15)(a)^{4}(b)^{2} + (20)(a)^{3}(b)^{3} + (15)a^{2}+b^{4} + (6)(a)^{1}(b)^{5} + (1)(a)^{0}(b)^{6}$
- If a question said 'Find the first four terms of $(1 \frac{x}{4})^{10}$ and use your result to find an approximate value to $(0.975)^{10}$. Find the degree of accuracy of your approximation' you would have to do a series of steps
 - First you would have to multiply out the bracket to get the first four terms

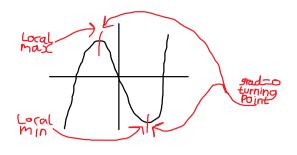
$$-1 - \frac{5x}{2} + \frac{45x^2}{16} - \frac{15x^3}{8}$$

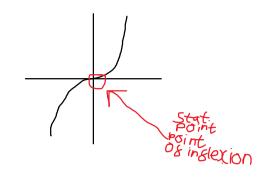
- Next, you would have to find out what value of the x to use, by solving $1 \frac{x}{4} = 0.975$ - x = 0.1
- Then you would have to substitute in the value for x into the expansion and find the answer
 0.77625
- To find the degree of accuracy, you put (0.975)¹⁰ into the calculator and get 0.77632962 and see how many decimal places your answer is accurate to
 - 0.77625 is accurate to 4 d.p.

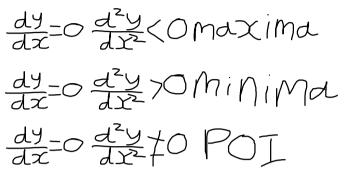
•
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \frac{n(n-1)(n-2)(n-3)}{4!}x^4$$
...

Differentiation

10 February 2012 13:31







Trigonomic ratios of common angles

24 March 2012 13:38

	0	30	45	60	90
Sine	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Cosine	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
Tangent	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	X

24 March 2012 13:47

COS²O-ISIN²O-1 Sino-tano

- The trigonomic identities on the right can be used in proof or to rearrange an equation into a useable form
- An example is shown below:

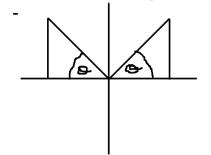
- Show that $\tan x + \frac{1}{\tan x} \equiv \frac{1}{\sin x \cos x}$ - $\tan x + \frac{1}{\tan x} = \frac{\sin x}{\cos x} + \frac{1}{\tan x} = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{(\sin x)^2}{\cos x \sin x} + \frac{(\cos x)^2}{\sin x \cos x} = \frac{(\cos x)^2 + (\sin x)^2}{\sin x \cos x} = \frac{1}{\sin x \cos x}$

Solving trigonomic equations

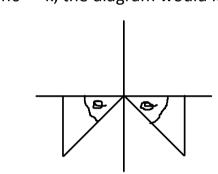
24 March 2012 14:09

- |

- Trigonomic equations in the form sin/cos/tan θ =k can be solved using the cast diagram
- The positivness or negativness of the k value decides which quadrant it is in
- For $\sin\theta = K$, the diagram would look like



- The answers for $0 < \theta < 360$ would be: θ , 180- θ
- The answers for -360<θ<360 would be: -180-θ, -360+θ, θ, 180-θ
- For $\sin\theta = -k$, the diagram would look like



- The answers for $0 < \theta < 360$ would be: $\theta + 180$, 360θ
- The answers for -360<θ<360 would be: -θ, -180+θ, θ+180, 360-θ

Geometric sequences

24 March 2012 14:23

- Geometric sequences increase by a common ratio called r
- $r = \frac{U_{n+1}}{U_n}$
- $U_n = ar^{n-1}$

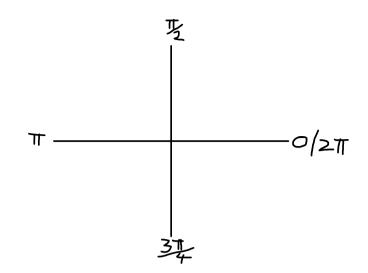
•
$$S_n = \frac{a(1-r^n)}{1-r}$$

• The sum to infinity exists as long as |r|<1

•
$$S_{\infty} = \frac{a}{1-r}$$

Radians

24 March 2012 15:35



• This formula will allows degrees to be converted in radians, and radians into degrees $heta^\circ$ θ^{c} -

$$\frac{1}{360} = \frac{1}{2\pi}$$

- The length of an arc = $r \times \theta^c$
- Area of a sector = $\frac{r^2 \theta^c}{2}$ Area of a segment = $\frac{r^2}{2}(\theta \sin \theta)$

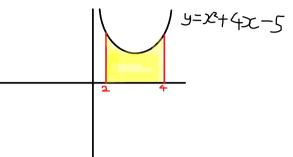
Integration

18 April 2012 13:29

> • Trapezium rule - $\frac{h}{2}(y_0 + y_n + 2(y_1 \dots y_{n-1}))$

Examples:

- Find the area under the curve $(y=x^2+4x-5)$ and above the X-axis between x=2 and x=4
 - Using integration



$$-\int_{2}^{4} (x^{2} + 4x - 5) dx = \left|\frac{x^{3}}{3} + 2x^{2} - 5x\right|_{2}^{4} = \frac{4^{3}}{3} + 2 \times 4^{2} - 5 \times 4 - \left(\frac{2^{3}}{3} + 2 \times 2^{2} - 5 \times 2\right) = 32\frac{2}{3}$$
 Units²

- Trapezium rule

X	2	2.5	3	3.5	4	
- y	7	11.25	16	21.25	27	
$-\frac{0.5}{2}($	7 + 27	7 + 2(12	1.25 +	16 + 2	21.25)	= 32.75

• To find out the area between a curve and line, simply integrate the equation of the curve minus the equation of the line