MECHANICS UNIT

KINEMATIC RELATIONSHIPS AND RELATIVISTIC MOTION

Calculus notation	$\mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}} ; \quad \mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{d}^{2} \mathrm{~s}}{\mathrm{dt}^{2}}$ derive $\mathrm{v}=\mathrm{u}+\mathrm{at} ; \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} ; \mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2}$
Rest Mass $\left(\mathrm{m}_{\mathrm{O}}\right)$	The mass of an object which is at rest relative to an observer. (The mass of an object increases with its velocity). The mass of an object which is travelling at a velocity comparable to the velocity of light.
Relativistic Mass (m)	$\mathrm{m}=\frac{\mathrm{m}_{\mathrm{o}}}{\sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}} \quad \text { [equation will be given] }}$
Relativistic Energy	$\mathrm{E}=\mathrm{mc}^{2}$

ANGULAR MOTION

Angular Displacement (θ)
Angular Velocity (ω)
Angular Acceleration (α)

Equations of Motion

Central Force

Central acceleration

Central Force equations
measured in radians. $\left(2 \pi\right.$ radians $\left.=360^{\circ}\right)$
$\omega=\frac{\mathrm{d} \theta}{\mathrm{dt}} \quad\left(\mathrm{rad} \mathrm{s}^{-1}\right)$
$\alpha=\frac{\mathrm{d} \omega}{\mathrm{dt}}=\frac{\mathrm{d}^{2} \theta}{\mathrm{dt}^{2}} \quad\left(\mathrm{rad} \mathrm{s}^{-2}\right)$
CIRCULAR MOTION LINEAR MOTION
[no derivations [derivations required]
required]

$$
\begin{array}{lc}
\omega=\omega_{0}+\alpha \mathrm{t} & \mathrm{v}=\mathrm{u}+\mathrm{at} \\
\theta=\omega_{0} \mathrm{t}+\frac{1}{2} \alpha \mathrm{t}^{2} & \mathrm{~s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2} \\
\omega^{2}=\omega_{0}^{2}+2 \alpha \theta & \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \\
& \mathrm{v}=\mathrm{r} \omega[\text { derivation required }] \\
& \mathrm{a}=\mathrm{r} \alpha[\text { no derivation required }]
\end{array}
$$

The force required to maintain a particle in circular motion.
$\mathrm{a}=\frac{\mathrm{v}^{2}}{\mathrm{r}} \quad$ and $\quad \mathrm{a}=\mathrm{r} \omega^{2}$
[derivation required]
$\mathrm{F}=\frac{\mathrm{mv}}{}{ }^{2}$ and $\mathrm{F}=\mathrm{m} \omega^{2} \mathrm{r}$

ROTATIONAL DYNAMICS

Moment of a Force

Torque (T)

Moment of Inertia (I)

The magnitude of the moment of a force (or the turning effect) is force x perpendicular distance
$\mathrm{T}=\mathrm{Fxr} \quad$ where r is the perpendicular distance from the force to the axis of rotation

The moment of inertia depends on the mass and the distribution of the mass about a fixed axis.
$\mathrm{I}=\mathrm{mr}^{2}$ mass m at distance r from axis of rotation
$\left[\mathrm{I}=\Sigma \mathrm{m} \mathrm{r}^{2}\right.$ (Σ is the 'sum of') equation not required $]$
$\mathrm{T}=\mathrm{I} \alpha$

Angular Momentum(L)
$\mathrm{L}=\mathrm{I} \omega \quad$ (for a rigid body)
$\mathrm{L}=\mathrm{mr}^{2} \omega=\mathrm{mrv} \quad$ (for a particle)
Rotational Kinetic Energy $\quad E_{\text {rot }}=\frac{1}{2} I \omega^{2} \quad$ (for a rigid body)

GRAVITATION

Law of Gravitation $\quad F=\frac{G m_{1} m_{2}}{r^{2}}$
Gravitational Potential $\quad V=-\frac{G m}{r} \quad$ (zero of V is at infinity)
Conservative Field The gravitational field is an example of a conservative field where the total work done moving a mass around any closed path is zero.

Equipotentials
Escape Velocity

Black Hole

Lines joining points of equal gravitational potential.
The velocity a projectile must have in order to escape from a planet's gravitational field.
$\mathrm{v}_{\mathrm{esc}}=\sqrt{\frac{2 \mathrm{G} \mathrm{M}}{\mathrm{r}}} \quad$ [derivation required]
A body with a sufficiently high density to make the escape velocity greater than c , the speed of light.

SIMPLE HARMONIC MOTION

SHM

SHM Equation

SHM Solutions

The unbalanced force, or acceleration, is proportional to the displacement of the object and acts in the opposite direction.
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=-\omega^{2} \mathrm{y} \quad$ and $\omega=\frac{2 \pi}{\mathrm{~T}}$
$y=a \sin \omega t$ if $y=0$ at $t=0$
$y=a \cos \omega t$ if $y=a$ at $t=0$
$v= \pm \omega \sqrt{a^{2}-y^{2}} \quad a=$ amplitude of motion.
$v_{\text {max }}= \pm \omega$ a and occurs at the centre of the motion,
$v_{\text {min }}=0$ at extremes.
Acceleration $\left(\frac{\mathbf{d}^{2} \mathbf{y}}{\mathbf{d t}^{2}}\right) \quad$ acc $=-\omega^{2} y$
$\operatorname{acc}_{\max }=-\omega^{2} \mathrm{a} \quad$ and occurs at $\mathrm{y}=\mathrm{a}$.
$\operatorname{acc}_{\text {min }}=0 \quad$ at centre.

Energy
$\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{~m} \omega^{2}\left(\mathrm{a}^{2}-\mathrm{y}^{2}\right) \quad[$ derivation required $]$
$\mathrm{E}_{\mathrm{p}}=\frac{1}{2} \mathrm{~m} \omega^{2} \mathrm{y}^{2} \quad[$ derivation required]
$E_{\text {tot }}=E_{k}+E_{p}=\frac{1}{2} m \omega^{2} a^{2}$

Damping

Damping causes the amplitude of the oscillation to decay.

WAVE PARTICLE DUALITY

Particles as Waves
de Broglie Wavelength

The Bohr Model of the Atom

Quantisation of Angular Momentum

Quantum Mechanics and Probability

Particles such as electrons can exhibit wave properties, such as diffraction.
$\lambda=\frac{\mathrm{h}}{\mathrm{p}}$ (h is the Planck constant and p is momentum)
The electrons occupy only certain allowed orbits. Angular momentum is quantised. Radiation is emitted when electrons move from higher energy levels to lower energy levels.
$\mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi}$
Quantum mechanics provides methods to determine probabilities.

ELECTRICAL PHENOMENA UNIT

ELECTRIC FIELDS

Coulomb's Inverse Square $\quad F=\frac{Q_{1} \mathrm{Q}_{2}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}} \quad$ or $\left[\frac{1}{4 \pi \varepsilon_{0}}\right] \cdot \frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{\mathrm{r}^{2}}$
Law
(ε_{0} is the permittivity of free space)
Electric Field Strength (E) Force on one coulomb of positive charge at that point.
$\mathrm{E}=\frac{\mathrm{F}}{\mathrm{Q}}$
Electric Field Strength for a uniform electric field
$\mathrm{E}=\frac{\mathrm{V}}{\mathrm{d}} \quad[$ derivation required $]$
Electric Field Strength for a point charge
$\mathrm{E}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{\mathrm{o}} \mathrm{r}^{2}} \quad$ or $\left[\frac{1}{4 \pi \varepsilon_{\mathrm{o}}}\right] \frac{\mathrm{Q}}{\mathrm{r}^{2}}$
[no derivation required]
Charging by Induction

Conducting Shapes

Electrostatic Potential
Conducting objects can be charged by separating the positive and negative charges on the objects and then removing one set of charges by earthing.

When a conducting shape is in an electric field the induced charge stays on its surface and the electric field inside the conducting shape is zero.

Work done by an external force to bring one coulomb of positive charge from infinity to that point.
$\mathrm{V}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{r}} \quad$ or $\left[\frac{1}{4 \pi \varepsilon_{0}}\right] \cdot \frac{\mathrm{Q}}{\mathrm{r}}$
[no derivation required]
Charged Particles in uniform electric fields

- non relativistic

Charged Particles in uniform electric fields

- relativistic case
$\frac{1}{2} \mathrm{mv}^{2}=\mathrm{QV} \quad$ (kinetic energy to electrical energy)

Relativistic effects must be considered when the velocity of the charged particle is more than 10% of the velocity of light.
[no relativistic calculations required]
Particle head-on collisions Change in $E_{k}=$ change in E_{p}

$$
\frac{1}{2} \mathrm{mv}^{2}=\frac{\mathrm{qQ}}{4 \pi \varepsilon_{0}} \cdot \frac{1}{\mathrm{r}}
$$

where r is closest distance of approach
Millikan's Experiment
Quantisation of charge.
$\mathrm{Eq}=\mathrm{mg}$ (neglecting upthrust)

ELECTROMAGNETISM

Tesla	The tesla is the magnetic induction of a magnetic field in which a conductor of length one metre, carrying a current of one ampere perpendicular to the field is acted on by a force of one newton
Magnetic Induction (B)	$\mathrm{F}=\mathrm{I} / \mathrm{B} \sin \theta \quad(\theta$ is the angle between B and $l)$ The direction of F is perpendicular to the plane containing B and I.
The Magnetic Induction around an 'infinite', straight conductor	$B=\frac{\mu_{0} \mathrm{I}}{2 \pi r} \quad\left(\mu_{\mathrm{o}} \text { is the permeability of free space }\right)$
Force between parallel conductors	$\frac{\mathrm{F}}{l}=\mu_{0} \frac{\mathrm{I}_{1} \mathrm{I}_{2}}{2 \pi \mathrm{r}} \quad$ [derivation required]

MOTION IN A MAGNETIC FIELD

Force on charge \mathbf{q}, speed \mathbf{v}, in field B :

Helical path
J.J. Thomson
‘Crossed’ fields
$\mathrm{F}=\mathrm{q} v \mathrm{~B} \sin \theta \quad(\theta$ is the angle between v and B$)$ The direction of F is perpendicular to the plane containing v and B.

This is the spiral path followed by a charge when its velocity makes an angle θ with the direction of B . $\mathrm{v} \sin \theta$ is the component perpendicular to the direction B , while $\mathrm{v} \cos \theta$ is the component parallel to the direction of B.

Measured the charge to mass ratio of the electron by using electric and magnetic deflection of an electron beam.

Electric and magnetic fields are applied at right angles to each other. Charged particles of certain speeds will pass through undeviated - velocity selector: $\mathrm{v}=\frac{\mathrm{E}}{\mathrm{B}}$

SELF-INDUCTANCE

Growth and Decay of current

Self-Induction

Self Inductance (L)

Henry
\section*{Direction of induced e.m.f.}

Energy stored

Energy equation

Current and frequency in an inductive circuit

Reactance
C and L in a.c. circuits

Uses

FORCES OF NATURE

Strong Force

Weak Force
Quarks

The current takes time to grow and decay in a d.c. circuit containing an inductor

An e.m.f. is induced across a coil when the current in the coil changes.
$\mathrm{e}=-\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}} \quad(\mathrm{L}$ is the self inductance of the coil)
The inductance of an inductor is one henry if an e.m.f. of one volt is induced when the current changes at a rate of one ampere per second.

The direction of the induced e.m.f. is such that it opposes the change of current. This is known as Lenz's Law. The negative sign in the above equation indicates this opposing direction.

The work done in building up the current in an inductor is stored in the magnetic field of the inductor.
The magnetic field can be a source of energy when the magnetic field is allowed to collapse.
$\mathrm{E}=\frac{1}{2} \mathrm{LI}^{2} \quad$ (energy E stored in inductor L$)$
Current is inversely proportional to the frequency in an inductive circuit.

The opposition to flow of an alternating current is called reactance.

For an inductor the reactance increases as the frequency of the a.c. increases. Conversely the reactance of a capacitor decreases as the frequency of the a.c. increases.

Inductors can be used to block a.c. signals while allowing d.c signals to pass. Capacitors can block d.c signals, but allow high frequency a.c. signals to pass. Inductors can be used to generate a high voltage when the magnetic field is allowed to collapse suddenly.

The force of attraction between nucleons in a nucleus, with a very short range $<1 \times 10^{-14} \mathrm{~m}$.

This is the force associated with β-decay.
Neutrons and protons are made up of quarks.

WAVE PHENOMENA SUMMARY

WAVES

Wave motion
Travelling Wave

Intensity of a wave
Superposition

Phase Difference

Stationary Wave

Nodes

Antinodes

Doppler Effect

Apparent frequency when source of sound moves

Apparent frequency when observer moves

Energy is transferred with no net mass transport.
The displacement, y, of any point on a travelling wave in the positive x direction is given by:

$$
\mathrm{y}=\mathrm{a} \sin 2 \pi\left(\mathrm{ft}-\frac{\mathrm{x}}{\lambda}\right) \quad[\text { explain not derive }]
$$

Intensity is directly proportional to (amplitude) ${ }^{2}$.
The displacement at a point, due to two or more waves, is the algebraic sum of the individual displacements.

For two points separated by distance x , the phase difference is $\phi=2 \pi \frac{x}{\lambda}$ (ϕ is the phase angle)

This wave is produced by the interference of two identical waves travelling in opposite directions

These are points of zero displacement on a stationary wave separated by a distance of $\frac{\lambda}{2}$.

These are points of maximum displacement on a stationary wave, also separated by $\frac{\lambda}{2}$.

This is the change in frequency which is observed when a source of sound waves moves relative to a stationary observer.

$$
\mathrm{f}_{\mathrm{obs}}=\mathrm{f}_{\mathrm{s}} \frac{\mathrm{v}}{\left(\mathrm{v}-\mathrm{v}_{\mathrm{s}}\right)}
$$

$$
f_{\text {obs }}=f_{s} \frac{v}{\left(v+v_{S}\right)}
$$

$\mathrm{f}_{\text {obs }}=\mathrm{f}_{\mathrm{s}} \frac{\mathrm{v}+\mathrm{v}_{\mathrm{o}}}{\mathrm{v}}$
$\mathrm{f}_{\text {obs }}=\mathrm{f}_{\mathrm{s}} \frac{\mathrm{v}-\mathrm{v}_{\mathrm{o}}}{\mathrm{v}}$
source moving towards stationary observer source moving away from stationary observer
observer moving towards stationary source
observer moving away
from stationary source
[derivation of the above expressions for $f_{\text {obs }}$ required]

INTERFERENCE - DIVISION OF AMPLITUDE

Coherent Sources of light	Coherent sources must have a constant phase difference.
Optical path length	Optical path length $=\mathrm{n} x$ geometrical path length
Optical path difference	For optical path lengths $\mathrm{S}_{1} \mathrm{P}$ and $\mathrm{S}_{2} \mathrm{P}$: $\left(\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}\right)=\mathrm{m} \lambda$ for constructive interference $\left(\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}\right)=\left(\mathrm{m}+\frac{1}{2}\right) \lambda$ for destructive interference

Phase difference and optical path length	phase difference $=\frac{2 \pi}{\lambda} \mathrm{x}$ optical path length
Phase change on	
reflection	When light reflects off an optically more dense medium a phase change of π occurs.
Thin Film	Destructive interference: $2 \mathrm{nt} \cos \mathrm{r}=\mathrm{m} \lambda$ For viewing at near normal incidence $2 \mathrm{nt}=\mathrm{m} \lambda$ [derivation required]
Wedge Fringes	At normal incidence, fringe separation $\Delta \mathrm{x}$ is $\Delta \mathrm{x}=\frac{\lambda}{2 \text { tane }}=\frac{\lambda \mathrm{L}}{2 \mathrm{D}}$ [derivation required] (D is the wedge separation, and L is the wedge length)
Non-Reflective Coatings	Thickness of coating, $\mathrm{d}=\frac{\lambda}{4 \mathrm{n}} \quad$ [derivation required]

INTERFERENCE - DIVISION OF WAVEFRONT

Point or line source

Young's Slits

POLARISATION

Plane Polarised Light

Polarisers and Analysers

Brewster's angle

Brewster's law

Explain why division of wavefront requires a point or line source. Describe why division of amplitude can use an extended source.

Fringe separation $\Delta \mathrm{x}=\frac{\lambda \mathrm{D}}{\mathrm{d}} \quad$ [derivation required]

Linearly polarised light waves consist of vibrations of the electric field strength vector in one plane only.

A polariser and analyser held so that their planes of polarisation are at right angles can prevent the transmission of light.

At the polarising angle i_{p}, known as Brewster's angle, the refracted and reflected rays are separated by 90°.
$\mathrm{n}=\tan \mathrm{i}_{\mathrm{p}} \quad$ [derivation required]

