| Answers | | | s | Marks | Examiner's tips | |---------|------------|---|--|--------|---| | 1 | a) | i) change in community over time; either due to environmental / abiotic factors / named abiotic factor; or conditions change due to species present | | 2 | Candidates often obtain the first mark
but do not appreciate that the species
present alter the environmental
conditions so that other species can
colonise the area. | | | | ii) | stable community / no further succession / final community | 1 | | | | b) | increased interspecific competition;
for light / nutrients / named nutrient /
water | | 2 | Note, <i>inter</i> specific not <i>intra</i> specific competition. | | | c) | leave
less
bior
ratio
dect
so h
pho
com
/ na
redu | rer / lower surface area / shading of yes; photosynthesis to produce new mass / glucose / growth; o of leaves to woody parts and roots reases; nigher respiration relative to tosynthesis / less net productivity; npetition with other species for nitrates med nutrient; uced synthesis of protein or named npound | 3 max. | An understanding of net productivity (Chapter 5) helps to answer this question. The diagram clearly shows a decrease in the number of leaves and therefore a decrease in photosynthesis. However, respiratory demand in the plant remains high. This results in less net productivity. Interspecific competition for nutrients could also reduce increase in biomass. | | 2 | a) | redu
becaredu
livin
add
redu
tree | o suitable examples, for example action in insect predators from ponds, ause ponds kept shallow; action in animals that are adapted to an at pH outside 5–7, because lime ed; action in species that feed on / live on as / shrubs, because these are removed, en by sheep / rabbits | 2 max. | The explanation must clearly show how the population of animals would be reduced by the suggested recommendation. | | | b) | kee
add
cha
no o
tree | servation measures tend to stop this;
p communities the same;
ing lime stops abiotic change / pH
nge;
climax community / community of
s and shrubs;
ep / rabbits prevent growth of shrubs / | 3 max. | This is an example of conserving habitats by managing succession. Succession would lead to a change in abiotic factors leading to a change in the community and a reduction in the number of natterjack toads. |