Medical Imaging

5.4.1

(a) Describe the nature of x-rays

- Powerful, short wavelength electromagnetic radiation
- Wavelength approx. -10^{-10} m
- Frequency approx. -10^{18} Hz

(b) Describe in simple terms how X-rays are produced

- X-ray tube
- Electrons accelerated from the heated cathode towards the anode
- High p.d between electrodes ∴ electrons hit the metal target anode with high speeds (energy)
- When they collide with anode, electrons decelerate rapidly
- Kinetic energy is converted to X-rays
- X-rays characteristic of target metal
- 1% of kinetic is used to form X-ray photons
- 99% of kinetic energy used to heat target
- Oil circulation cools anode by convection

(c) Describe how X-rays interact with matter (limited to photoelectric effect, Compton Effect (scattering) and pair production)

- Photoelectric effect(< 50keV) :
 - X-ray photon energy is absorbed by electron
 - X-ray photon energy > binding energy of electron in atom
 - Then electrons emitted from atom as photoelectrons
- Compton effect (scattering)
 - X-ray photon hits free electron at rest
 - \circ Electron recoils, X-ray photon deflected through an angle θ
 - \circ The greater the angle of deflection θ , the greater the loss of energy of the photon
 - \circ So $\Delta\lambda$ is greater
- Pair production (> 1.02MeV) :
 - High energy X-ray photon interacts with electric field of nucleus
 - Electron-positron pair emerge
 - Energy lost by ionisation
 - o Positron annihilates electron producing two identical photons
 - \circ $\;$ Not significant in diagnostic X-ray imaging as high energies $\;$ required
- Photoelectric effect dominates when low energy photons interact with high Z materials

(d) Define intensity as power per unit cross-sectional area

(e) Select and use the equation $I = I_0 e^{-\mu x}$ to show how the intensity I of a collimated X-ray beam varies with thickness of medium;

- Attenuation coefficient depends on energy of X-ray photon and proton number of material though which the beam passes
- Fall-off in intensity is exponential

(f) Describe the use of X-rays in imaging internal body structures including the use of image intensifiers;

- X-ray photons penetrate patient
- Bone is much more dense than soft tissue
- .: attenuation of bone is greater
- Less X-rays reach film under bone giving a shadow effect
- Intensity of X-rays is proportional to darkening of film
- Image intensifier:
 - X-ray photons hit and are absorbed by fluorescent crystals in intensifying layer
 - Atoms become excited, re-emitting energy as visible light photons as they return to the ground state
 - Visible light photons hit the photographic film
 - Film is more sensitive to visible light photons ∴ giving greater blackening and contrast
- Advantage of intensifying screen:
 - Less X-rays needed : less exposure to patient

(g) Explain how soft tissues like the intestines can be imaged using a barium meal

- X-rays do not differentiate soft tissues well
- Soft tissues have low and similar Z values
- Contrast medium has high Z value, (attenuation αZ^3)
- .: Absorbs X-rays strongly
- Barium is ingested/injected into body
- Outline of organs can be seen clearly
- Used to image digestive tract/throat/stomach

(h) Describe the operation of a computerised axial tomography scanner (CAT)

- X-ray source and detectors placed around patient
- X-ray source is shielded so that the rays emerge from a point and spread throughout patient
- X-rays are thin and fan-shaped to produced thin-slice
- Source is rotated around patient and passed through same section of body from many different directions/angles
- Thin-slice of cross-section produced and image is stored
- Patient is moved a small a distance and process is repeated
- Computer analyses data and produces 3-D image
- Describe the advantages of a CAT scan compared with an X-ray image
 - Ability to image bone, soft tissue and blood vessels all at the same time

- Provides very detailed image of many types of tissue
- Can be taken quickly (suitable for emergency cases)
- Low dose of radiation required due to sensitivity of sensors/detectors

<u>5.4.2</u>

(a) Describe the use of medical tracers like technetium-99m to diagnose the function of organs

- Radioactive tracer is incorporated within a pharmaceutical product, which is ingested/injected into body
- Tracer will be emitting gamma rays so its path through the body can be monitored
- Properties of tracer
 - $\circ~$ Must decay predominantly by γ -radiation (appropriate energy), $~\alpha$ and β would damage and be absorbed by body
 - Half-life must be long enough for diagnosis to take place but short enough for it not to remain in the body for a long time
 - \circ Must be possible to monitor it
 - Must not be chemically poisonous
 - Must be able to reach part of body being diagnosed

(b) Describe the main components of the gamma camera

- Lead collimator
 - Gamma rays leave the patient and travel towards collimator
 - Only the gamma rays which are parallel to the collimator pass through the crystal
 - o Others are absorbed by the lead
 - This allows the system to know the position from which the gamma rays were emitted
 - Image is more accurate
- Scintillator (sodium iodide crystal)
 - Crystal absorbs gamma photons, which causes it to emit a photon of visible light (scintillation)
- Photomultiplier tube
 - Visible light photons pass through photomultiplier tube where it falls on to a photocathode, emitting an electron by photoelectric effect
 - Electron is accelerated towards a dynode at a positive potential with respect to the photocathode (Dynode's are materials that emit several electrons when hit by a single electron)
 - The electrons emitted accelerate towards another dynode of high positive potential and the process continues in a series of about 10 dynodes until it reaches the amplifier (many electrons at this point)
- Computer
 - Data is processed to give a display

(c) Describe the principles of positron emission tomography (PET)

- Radioactive isotope is introduced in the body such as ¹⁸F
- Nuclei decays by emission of positron
- Positron meets electron and annihilation occurs, which forms two γ-photons (each of energy 0.51MeV)
- Photons move away in opposite directions to conserve momentum
- Gamma ray detectors arranged in a circle around patient can determine the position of the positron emission within the patient from the time delay between each photon
- A composite image is formed from all pairs of photons

(d) Outline the principles of magnetic resonance, with reference to precession of nuclei, Larmor frequency, resonance and relaxation times

- Nuclei of hydrogen have property known as spin
- In a strong magnetic field, nuclei precess about the direction of the field with a frequency known as the Larmor frequency
- A Radio wave pulse at the Larmor frequency causes resonance and nuclei precess at a higher energy state
- After pulse is gone, the nuclei relax emitting a radio frequency signal, returning back to its equilibrium state

(e) Describe the main components of an MRI scanner

- Large main magnet:
 - Produces strong uniform magnetic field (1.4T)
- Additional magnets:
 - These magnets are calibrated to produce non-uniform magnetic field
 - As Larmor frequency depends on the magnetic field strength, the Larmor frequency will vary slightly from place to place
 - This allows H nuclei at different parts of the body to be detected
- Radiofrequency coil:
 - Emits pulses of RF waves to patient though coil
 - Picks up RF waves emitted from patient as a result of the de-excitation of H nuclei
- Computer/Display:
 - RF signals from patient are processed and displayed so as to construct an image of the number density of H atoms in the patient
 - As non-uniform field is changed, atoms in different parts of the patient's body are detected and displayed
 - An image of a cross-section through patient is produced

(f) Outline the use of MRI to obtain diagnostic information about internal organs

- Patient is subject to strong magnetic field and calibrated non-uniform magnetic field
- RF pulse at Larmor frequency is transmitted to patient
- RF emissions from patient are detected and processed
- H nuclei within patient have a Larmor frequency dependant on magnetic field strength
- So that location and density of H nuclei can be detected
- An image is built up by varying the non-uniform field to give specific field strength at different positions within the patient

(g) Describe the advantages and disadvantages of MRI

- Advantages:
 - o Does not use ionising radiation, so no radiation hazard to patient or staff
 - o Gives better soft tissue contrast than CAT scan
 - o High quality image
 - o 3D image produced
 - o Radio waves pass through all materials (except metal)
 - No known side-effects
- Disadvantages
 - Expensive and time consuming
 - o Patient cannot have metal objects e.g. heart pacemaker
 - All external radio-waves must be eliminated

(h) Describe the need for non-invasive techniques

- Frequently, diagnosis cannot be achieved from external symptoms only
- Need to have information relating to internal structures
- Surgery is costly and time consuming
- Surgery has significant risk complications e.g. infection
- Non-invasive techniques are usually quicker and of less risk

(i)Explain what is meant be the Doppler Effect

• This is the apparent change in frequency registered by an observer when there is relative motion between the source and the observer

(j) Explain qualitatively how the Doppler Effect can be used to determine the speed of blood

- Ultrasound is a wave motion and, if there is any motion of the object that reflects the ultrasound, then the frequency detected at the transducer will be different from that emitted
- Ultrasound source is stationary and blood in a blood vessel is moving towards the transducer
- The apparent frequency of the ultrasound increases because the reflector(blood) is moving towards source(transducer)
- By monitoring the change in frequency of the ultrasound of known frequency, it is possible to obtain an average speed of the blood in the vessel [f' = cf/(c-2v) or $\Delta f = 2fv\cos\theta/c$]
- Technique can be used to monitor fetal heartbeat

<u>5.4.3</u>

(a) Describe the properties of ultrasound

- Sound wave's above audible frequency
- Medical applications use frequencies of 1-15MHz
- Non-ionising

(b) & (c) describe the piezoelectric effect; explain how ultrasound transducers emit and receive high frequency sound

- Transducers have a piezoelectric crystal and a backing material
- Piezoelectric crystal deforms when p.d is applied across it
- Crystal oscillates when an alternating p.d is applied across it
- If the frequency matches the resonance frequency of the crystal, ultrasound is generated
- Ultrasound in turn causes crystal to resonate, causing an alternating p.d across it
- Pulsing is needed as reflected signal needs to be compared to initial signal
- With continuous a.c signal, comparison not possible
- Backing material such as epoxy resin, is used to damp crystal vibration after a.c pulse ends so crystal is ready to receive reflected signal

(d) Describe the principles of ultrasound scanning

- Pulse of ultrasound transmitted into body where it is reflected at the boundary between different tissues
- Reflected wave is detected and processed
- Time for echo to reach detector indicates depth of tissue boundary
- Intensity of echo gives information about tissue boundary

(d) Describe the difference between A-scan and B-scan

- A-scan allows 1-dimensional measurements to be made
- B-scan, a series of A-scans taken from different angles which gives a two-dimensional image

(f) Calculate the acoustic impedance using the Z =pc

(g) Calculate the fraction of reflected intensity using the equation $\frac{I_r}{I_0} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$

(h) & (i) describe the importance of impedance matching; explain why a gel is required for effective ultrasound imaging techniques

- Amount of reflection of a wave at a boundary depends on the difference in acoustic impedance of the two media.
- The intensity reflection coefficient for a boundary between air and soft tissue is very high
- Very little ultrasound is transmitted to body
- Gel excludes air between boundaries and has an impedance close to that of skin
- So greatly reduces reflection at skin surface