MEI STRUCTURED MATHEMATICS

METHODS FOR ADVANCED MATHEMATICS, C3

Practice Paper C3-A

Additional materials: Answer booklet/paper
Graph paper
List of formulae (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

Section A (36 marks)

1 Prove that the product of consecutive integers is always even.

2 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $y=\sqrt{1+x^{3}}$.

3 The graph shows part of the function $y=a \ln (b x)$.

The graph passes through the points $(2,0)$ and $(4,1)$.
(i) Show that $b=\frac{1}{2}$ and find the exact value of a.
(ii) Solve the inequality $|a \ln (b x)|<2$.

4 (i) Show that $y=a x e^{-x}$ for $a>0$ has only one stationary point for all values of x. Determine whether this stationary value is a maximum or minimum point.
(ii) Sketch the curve.

5 Find $\int_{2}^{3} x \mathrm{e}^{2 x} \mathrm{~d} x$, giving your answer to 1 decimal place.

6 Find $\frac{\mathrm{d}}{\mathrm{d} x}(x \ln x)$ and hence or otherwise find the value of $\int_{2}^{3} \ln x \mathrm{~d} x$, giving your answer in the form $\ln a+b$, where a and b are to be determined.

7 Two quantities, x and θ, vary with time and are related by the equation $x=5 \sin \theta-4 \cos \theta$.
(i) Find the value of x when $\theta=\frac{\pi}{2}$.
(ii) When $\theta=\frac{\pi}{2}$, its rate of increase (in suitable units) is given by $\frac{\mathrm{d} \theta}{\mathrm{d} t}=0.1$. Show that at that moment $\frac{\mathrm{d} x}{\mathrm{~d} t}=0.4$.

Section B (36 marks)

8 You are given that $\mathrm{f}(x)=\frac{x}{x^{2}+1}$ for all real values of x.
(i) Show that $\mathrm{f}^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$.
(ii) Hence show that there is a stationary value at $\left(1, \frac{1}{2}\right)$ and find the coordinates of the other stationary point.
(iii) The graph of the curve is shown in Fig. 8.

Fig. 8
State whether the curve is odd or even and prove the result algebraically.
(iv) Show that $\int_{1}^{4} \frac{x}{x^{2}+1} \mathrm{~d} x=\int_{a}^{b} k \frac{1}{u+1} \mathrm{~d} u$, where the values of a, b and k are to be determined.
(v) Hence find the area of the shaded region in Fig. 8.

9 The curve in Fig. 9.1 has equation $\sqrt{x}+\sqrt{y}=1$.

Fig. 9.1
(i) Show that this is part, but not all of the curve $y=1-2 \sqrt{x}+x$.

Sketch the full curve $y=1-2 \sqrt{x}+x$.
(ii) Fig.9.2 shows a star shape made up of four parts, one of which is given in part (i) above.

Fig. 9.2
For each of the sections of the shape labelled A, B and C, state the equation of the curve and the domain.
(iii) The shape shown in Fig.9.2 is made into that in Fig. 10.3 by stretching the part of the figure for which $y>0$ by a scale factor of 2 .

Fig. 9.3
Find the area of this shape.

MEI STRUCTURED MATHEMATICS

METHODS OF ADVANCED MATHEMATICS, C3

Practice Paper C3-A

MARK SCHEME

Qu		Answer	Mark	Comment
Section A				
1		Product of two numbers, one of which is even is always even. Two consecutive numbers contain an even number. $O R$ acceptable alternatives	$\begin{array}{\|lll} \hline \text { B1 } & \\ \text { B1 } & \\ & 2 & 2 \end{array}$	
2		$\begin{array}{r} y=\sqrt{1+x^{3}} \quad \text { Let } u=1+x^{3} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=3 x^{2} \\ y=u^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} u}=\frac{1}{2} u^{-\frac{1}{2}} \\ \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} u^{-\frac{1}{2}} \times 3 x^{2}=\frac{3}{2} \frac{x^{2}}{\sqrt{1+x^{3}}} \end{array}$	M1 A1 A1 3	Chain rule $\frac{\mathrm{d} y}{\mathrm{~d} u}$ Answer
3	(i)	Substitute: $\begin{aligned} & 0=a \ln 2 b \Rightarrow \ln 2 b=0 \Rightarrow 2 b=1 \Rightarrow b=1 / 2 \\ & 1=a \ln 2 \Rightarrow a=\frac{1}{\ln 2} \end{aligned}$	M1 A1 A1 3	
	(ii)	$\begin{aligned} & \|a \ln (b x)\|<2 \Rightarrow\left\|\frac{\ln \frac{1}{2} x}{\ln 2}\right\|<2 \Rightarrow\left\|\ln \frac{1}{2} x\right\|<2 \ln 2 \\ & \Rightarrow-2 \ln 2<\ln \frac{1}{2} x<2 \ln 2 \\ & \Rightarrow \ln \frac{1}{4}<\ln \frac{1}{2} x<\ln 4 \\ & \Rightarrow \frac{1}{4}<\frac{1}{2} x<4 \Rightarrow \frac{1}{2}<x<8 \end{aligned}$	$\begin{array}{lr} \text { M1 } \\ \text { M1 } \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ & 4 \end{array}$	Modulus Powers of logs
4	(i)	$\begin{aligned} & y=a x \mathrm{e}^{-x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=a \mathrm{e}^{-x}-a x \mathrm{e}^{-x}=a \mathrm{e}^{-x}(1-x) \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow x=1 \text { only at }\left(1, \frac{a}{e}\right) \\ & \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-a e^{-x}(1-x)-a \mathrm{e}^{-x}: \text { When } x=1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}<0 \\ & \Rightarrow \text { Maximum } \end{aligned}$	M1 A1 M1 A1 B1	Product $=0$ or any equivalent argument
	(ii)		B1 B1 2	For curve for stationary point

5		$\begin{aligned} & \int_{2}^{3} x \mathrm{e}^{2 x} \mathrm{~d} x \quad u=x, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\mathrm{e}^{2 x} \\ & \frac{\mathrm{~d} u}{\mathrm{~d} x}=1, v=\frac{1}{2} \mathrm{e}^{2 x} \\ & =\left[\frac{1}{2} x \mathrm{e}^{2 x}\right]_{2}^{3}-\frac{1}{2} \int_{2}^{3} \mathrm{e}^{2 x} \mathrm{~d} x=\left[\frac{1}{2} x \mathrm{e}^{2 x}-\frac{1}{4} \mathrm{e}^{2 x}\right]_{2}^{3} \\ & =\frac{5}{4} \mathrm{e}^{6}-\frac{3}{4} \mathrm{e}^{4}=463.3 \end{aligned}$	M1 A1 M1 A1 A1 5	Choice of u
6		$\begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} x}(x \ln x)=\ln x+x \times \frac{1}{x} & =\ln x+1 \\ \Rightarrow x \ln x=\int(\ln x+1) \mathrm{d} x & =\int \ln x \mathrm{~d} x+x \\ \Rightarrow \int_{2}^{3} \ln x \mathrm{~d} x=[x \ln x-x]_{2}^{3} & =(3 \ln 3-3)-(2 \ln 2-2) \\ & =3 \ln 3-2 \ln 2-1 \\ & =\ln \frac{27}{4}-1 \end{aligned}$	M1 A1 M1 A1 M1 A1 6	Product Integrand limits
7	(i)	$x=5 \sin \frac{\pi}{2}-4 \cos \frac{\pi}{2}=5$	$\begin{array}{ll}\text { B1 } & \\ & \mathbf{1}\end{array}$	
	(ii)	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} \theta}=5 \cos \theta+4 \sin \theta: \text { When } \theta=\frac{\pi}{2}, \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=4 \\ & \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{~d} t}=4 \times 0.1=0.4 \end{aligned}$	M1 A1 A1 M1 E1 5	4
Section B				
8	(i)	$\begin{aligned} & \mathrm{f}(x)=\frac{x}{x^{2}+1} \Rightarrow \mathrm{f}^{\prime}(x)=\frac{\left(x^{2}+1\right) \cdot 1-x \cdot 2 x}{\left(x^{2}+1\right)^{2}} \\ & =\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} \end{aligned}$	M1 A1 E1 3	Formula Middle section answer
	(ii)	$\mathrm{f}^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}=0 \Rightarrow 1-x^{2}=0 \Rightarrow x= \pm 1$ When $x=1, \mathrm{f}(x)=\frac{1}{1+1}=\frac{1}{2} \quad$ i.e. $\left(1, \frac{1}{2}\right)$ Other stationary point is when $x=-1, \mathrm{f}(x)=\frac{-1}{1+1}=-\frac{1}{2}$ i.e. $\left(-1,-\frac{1}{2}\right)$	E1 B1 2	Substitute Find $\mathrm{f}(x)$
	(iii)	The graph is odd. $f(-x)=\frac{-x}{(-x)^{2}+1}=-\frac{x}{x^{2}+1}=-f(x)$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & \\ & \\ \hline & 2 \\ \hline \end{array}$	

	(iv)	$\begin{aligned} & u=x^{2} \Rightarrow \mathrm{~d} u=2 x \mathrm{~d} x \\ & \text { When } x=1, u=1 \\ & \text { When } x=4, u=16 \\ & \Rightarrow \int_{1}^{4} \frac{x}{x^{2}+1} \mathrm{~d} x=\int_{1}^{16} \frac{1}{u+1} \cdot \frac{1}{2} \mathrm{~d} u \\ & \Rightarrow a=1, b=16, k=\frac{1}{2} \end{aligned}$	M1 B1 B1 A1 A1 5	
	(v)	Because the function is odd the area in $[-1,0]$ is equal in magnitude but opposite in sign to the area in $[0,1]$ $\begin{aligned} & \text { So shaded area }=\int_{1}^{4} \frac{x}{x^{2}+1} \mathrm{~d} x+2 \int_{0}^{1} \frac{x}{x^{2}+1} \mathrm{~d} x \\ & =\int_{1}^{16} \frac{1}{u+1} \cdot \frac{1}{2} \mathrm{~d} u+2 \int_{0}^{1} \frac{1}{u+1} \cdot \frac{1}{2} \mathrm{~d} u \\ & =\frac{1}{2}[\ln (u+1)]_{1}^{16}+2 \frac{1}{2}[\ln (u+1)]_{0}^{1} \\ & =\frac{1}{2} \ln \frac{17}{2}+2 \frac{1}{2} \ln 2=\frac{1}{2}\left(\ln \frac{17}{2}+\ln 4\right)=\frac{1}{2} \ln 34 \square 1.763 \end{aligned}$	B1 M1 A1 M1 A1 A1	$\ln (u+1)$
9	(i)	$\begin{aligned} & \sqrt{y}=1-\sqrt{x} \\ & \Rightarrow y=(1-\sqrt{x})^{2}=1+x-2 \sqrt{x} \end{aligned}$ This is undefined for $x<0$ but is defined for $x>1$ so that part is missing.	M1 A1 A1 B1 B1 B1 B1	Or: squaring introduces also the negative arm $\begin{aligned} & x<0 \\ & x>0 \end{aligned}$ Extra range shape
	(ii)	A is $\sqrt{-x}+\sqrt{y}=1$ for $-1 \leq x \leq 0$ B is $\sqrt{-x}+\sqrt{-y}=1$ for $-1 \leq x \leq 0$ C is $\sqrt{x}+\sqrt{-y}=1$ for $0 \leq x \leq 1$	B1 B1 B1 B1 B1 B1 6	
	(iii)	Area in Fig. 9.1 is $\int_{0}^{1}(1+x-2 \sqrt{x}) \mathrm{d} x$ $=\left[x+\frac{1}{2} x^{2}-\frac{4}{3} x^{\frac{3}{2}}\right]_{0}^{1}=1+\frac{1}{2}-\frac{4}{3}=\frac{1}{6}$ \Rightarrow Area of shape is $\frac{1}{6}+\frac{1}{6}+2 \times \frac{1}{6}+2 \times \frac{1}{6}=1$	M1 A1 A1 M1 A1 5	

