

MEI STRUCTURED MATHEMATICS

METHODS FOR ADVANCED MATHEMATICS, C3

Practice Paper C3-A

Additional materials: Answer booklet/paper

Graph paper

List of formulae (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer **all** the questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

Section A (36 marks)

1 Prove that the product of consecutive integers is always even. [2]

2 Find
$$\frac{dy}{dx}$$
 when $y = \sqrt{1 + x^3}$. [3]

3 The graph shows part of the function $y = a \ln(bx)$.

The graph passes through the points (2, 0) and (4, 1).

(i) Show that
$$b = \frac{1}{2}$$
 and find the exact value of a . [3]

(ii) Solve the inequality
$$|a \ln(bx)| < 2$$
. [4]

- 4 (i) Show that $y = axe^{-x}$ for a > 0 has only one stationary point for all values of x.

 Determine whether this stationary value is a maximum or minimum point. [5]
 - (ii) Sketch the curve. [2]
- 5 Find $\int_{2}^{3} xe^{2x} dx$, giving your answer to 1 decimal place. [5]
- Find $\frac{d}{dx}(x \ln x)$ and hence or otherwise find the value of $\int_{2}^{3} \ln x \, dx$, giving your answer in the form $\ln a + b$, where a and b are to be determined. [6]

7 Two quantities, x and θ , vary with time and are related by the equation $x = 5\sin\theta - 4\cos\theta$.

(i) Find the value of x when
$$\theta = \frac{\pi}{2}$$
. [1]

(ii) When $\theta = \frac{\pi}{2}$, its rate of increase (in suitable units) is given by $\frac{d\theta}{dt} = 0.1$. Show that at that moment $\frac{dx}{dt} = 0.4$.

Section B (36 marks)

8 You are given that $f(x) = \frac{x}{x^2 + 1}$ for all real values of x.

(i) Show that
$$f'(x) = \frac{1 - x^2}{\left(x^2 + 1\right)^2}$$
. [3]

- (ii) Hence show that there is a stationary value at $\left(1, \frac{1}{2}\right)$ and find the coordinates of the other stationary point. [2]
- (iii) The graph of the curve is shown in Fig. 8.

Fig. 8

State whether the curve is odd or even and prove the result algebraically. [2]

- (iv) Show that $\int_{1}^{4} \frac{x}{x^2 + 1} dx = \int_{a}^{b} k \frac{1}{u + 1} du$, where the values of a, b and k are to be determined. [5]
- (v) Hence find the area of the shaded region in Fig. 8. [6]

9 The curve in Fig. 9.1 has equation $\sqrt{x} + \sqrt{y} = 1$.

Fig. 9.1

(i) Show that this is part, but not all of the curve $y = 1 - 2\sqrt{x} + x$.

Sketch the full curve
$$y = 1 - 2\sqrt{x} + x$$
. [7]

(ii) Fig.9.2 shows a star shape made up of four parts, one of which is given in part (i) above.

Fig. 9.2

For each of the sections of the shape labelled A, B and C, state the equation of the curve and the domain. [6]

(iii) The shape shown in Fig. 9.2 is made into that in Fig. 10.3 by stretching the part of the figure for which y > 0 by a scale factor of 2.

Find the area of this shape.

[5]

MEI STRUCTURED MATHEMATICS

METHODS OF ADVANCED MATHEMATICS, C3

Practice Paper C3-A

MARK SCHEME

Qu		Answer	Mark	Comment
Sec	tion A	4		
1		Product of two numbers, one of which is even is always even.	B1	
		Two consecutive numbers contain an even number. <i>OR</i> acceptable alternatives	B1	
			2	
2		$y = \sqrt{1 + x^3}$ Let $u = 1 + x^3 \Rightarrow \frac{du}{dx} = 3x^2$	M1	Chain rule
		$y = u^{\frac{1}{2}} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}u} = \frac{1}{2}u^{-\frac{1}{2}}$	A1	$\frac{\mathrm{d}y}{\mathrm{d}u}$
		$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}u^{-\frac{1}{2}} \times 3x^2 = \frac{3}{2}\frac{x^2}{\sqrt{1+x^3}}$	A1 3	Answer
3	(i)	Substitute: $0 = a \ln 2b \Rightarrow \ln 2b = 0 \Rightarrow 2b = 1 \Rightarrow b = \frac{1}{2}$	M1 A1	
		$1 = a \ln 2 \Rightarrow a = \frac{1}{\ln 2}$	A1	
			3	
	(ii)	$\left a \ln(bx) \right < 2 \Rightarrow \left \frac{\ln \frac{1}{2} x}{\ln 2} \right < 2 \Rightarrow \left \ln \frac{1}{2} x \right < 2 \ln 2$		
		$\Rightarrow -2\ln 2 < \ln \frac{1}{2}x < 2\ln 2$	M1	Modulus
		$\Rightarrow \ln \frac{1}{4} < \ln \frac{1}{2} x < \ln 4$	M1	Powers of logs
		$\Rightarrow \frac{1}{4} < \frac{1}{2}x < 4 \Rightarrow \frac{1}{2} < x < 8$	A1 A1 4	
4	(i)	$y = axe^{-x} \Rightarrow \frac{dy}{dx} = ae^{-x} - axe^{-x} = ae^{-x} (1-x)$	M1	Product
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow x = 1 \text{ only at } \left(1, \frac{a}{e}\right)$	A1 M1 A1	= 0
		$\frac{d^2 y}{dx^2} = -ae^{-x}(1-x) - ae^{-x}: \text{ When } x = 1, \frac{d^2 y}{dx^2} < 0$	B1	or any equivalent
		⇒ Maximum	5	argument
	(ii)	$\left(1, \frac{a}{e}\right)$	B1	For curve
			B1	for stationary point
		/ . <u>.</u> l	2	

<i></i>		3		
5		$\int_{2}^{3} x e^{2x} dx \qquad u = x, \frac{dv}{dx} = e^{2x}$	M1	Choice of u
		$\frac{du}{dx} = 1, \ v = \frac{1}{2}e^{2x}$	A1	
		$= \left[\frac{1}{2} x e^{2x} \right]_{3}^{3} - \frac{1}{2} \int_{5}^{3} e^{2x} dx = \left[\frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} \right]_{3}^{3}$	M1	
			A1	
		$=\frac{5}{4}e^6 - \frac{3}{4}e^4 = 463.3$	A1	5
6		$= \frac{5}{4}e^{6} - \frac{3}{4}e^{4} = 463.3$ $\frac{d}{dx}(x \ln x) = \ln x + x \times \frac{1}{x} = \ln x + 1$	M1 A1	Product
		$\Rightarrow x \ln x = \int (\ln x + 1) dx = \int \ln x dx + x$	M1	
		3	A1	Integrand
		$\Rightarrow \int_{2}^{3} \ln x dx = \left[x \ln x - x \right]_{2}^{3} = (3 \ln 3 - 3) - (2 \ln 2 - 2)$	M1	limits
		$=3\ln 3 - 2\ln 2 - 1$		
		$-\ln^{27}$	A1	
	7	$=\ln\frac{27}{4}-1$		6
7	(i)	$x = 5\sin\frac{\pi}{2} - 4\cos\frac{\pi}{2} = 5$	B1	1
	(ii)	$\frac{dx}{d\theta} = 5\cos\theta + 4\sin\theta$: When $\theta = \frac{\pi}{2}$, $\frac{dx}{d\theta} = 4$	M1	
			A1 A1	4
		$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}\theta} \times \frac{\mathrm{d}\theta}{\mathrm{d}t} = 4 \times 0.1 = 0.4$	M1	
		$\mathrm{d}t - \mathrm{d}\theta - \mathrm{d}t$	E1	_
Soot	ion B			5
8	(i)			
		$(x^2+1).1-x.2x$	M1	Formula
		$f(x) = \frac{x}{x^2 + 1} \Rightarrow f'(x) = \frac{(x^2 + 1) \cdot 1 - x \cdot 2x}{(x^2 + 1)^2}$	A1	Middle
		,		section
		$=\frac{1-x^2}{\left(x^2+1\right)^2}$	E1	answer
			:	3
	(ii)	$f'(x) = \frac{1 - x^2}{(x^2 + 1)^2} = 0 \Rightarrow 1 - x^2 = 0 \Rightarrow x = \pm 1$		
		(x^2+1)		
		When $x = 1$, $f(x) = \frac{1}{1+1} = \frac{1}{2}$ i.e. $\left(1, \frac{1}{2}\right)$	E1	Substitute Find $f(x)$
		Other stationary point is when $x = -1$, $f(x) = \frac{-1}{1+1} = -\frac{1}{2}$	D1	
			B1	2
	1	i.e. $\left(-1, -\frac{1}{2}\right)$		
		(-)		
	(iii)	The graph is odd.	B1	
	(iii)	(-)	B1 B1	

	(iv)	$u = x^2 \Rightarrow du = 2xdx$	M1	
		When $x = 1, u = 1$	B1	
		When $x = 4$, $u = 16$	B1	
		${}^{4}_{c} x {}^{16}_{c} 1 1$	A1	
		$\Rightarrow \int_{1}^{4} \frac{x}{x^2 + 1} dx = \int_{1}^{16} \frac{1}{u + 1} \cdot \frac{1}{2} du$		
		1 1	A1	
		$\Rightarrow a = 1, b = 16, k = \frac{1}{2}$	5	
	(v)	Because the function is odd the area in [-1,0] is equal in	B1	
		magnitude but opposite in sign to the area in [0,1]		
		So shaded area = $\int_{1}^{4} \frac{x}{x^2 + 1} dx + 2 \int_{0}^{1} \frac{x}{x^2 + 1} dx$	M1	
		$= \int_{1}^{16} \frac{1}{u+1} \cdot \frac{1}{2} du + 2 \int_{0}^{1} \frac{1}{u+1} \cdot \frac{1}{2} du$	A1	
		$= \frac{1}{2} \left[\ln \left(u + 1 \right) \right]_{1}^{16} + 2 \frac{1}{2} \left[\ln \left(u + 1 \right) \right]_{0}^{1}$	M1 A1	$\ln(u+1)$
		$= \frac{1}{2} \ln \frac{17}{2} + 2 \frac{1}{2} \ln 2 = \frac{1}{2} \left(\ln \frac{17}{2} + \ln 4 \right) = \frac{1}{2} \ln 34 \square 1.763$	A1 6	
9	(i)	$\sqrt{y} = 1 - \sqrt{x}$	M1	Or: squaring
		$\Rightarrow y = \left(1 - \sqrt{x}\right)^2 = 1 + x - 2\sqrt{x}$	A1 A1	introduces also the
		$\rightarrow y - (1 - \sqrt{x}) - 1 + x - 2\sqrt{x}$	AI	negative arm
		This is undefined for $x < 0$ but is defined for $x > 1$ so that		
		part is missing.	B1 B1	$\begin{vmatrix} x < 0 \\ x > 0 \end{vmatrix}$
		2 TY	DI	x > 0
		1	B1	Extra range
		6.5	B1	shape
		43	7	
	(ii)	A is $\sqrt{-x} + \sqrt{y} = 1$ for $-1 \le x \le 0$	B1	
			B1	
		B is $\sqrt{-x} + \sqrt{-y} = 1$ for $-1 \le x \le 0$	B1 B1	
		D is $\sqrt{-x} + \sqrt{-y} - 1$ for $-1 \le x \le 0$	B1	
			B1	
	(***)	C is $\sqrt{x} + \sqrt{-y} = 1$ for $0 \le x \le 1$	6	
	(iii)	Area in Fig. 9.1 is $\int_{0}^{1} \left(1 + x - 2\sqrt{x} \right) dx$	M1	
		$= \left[x + \frac{1}{2}x^2 - \frac{4}{3}x^{\frac{3}{2}}\right]_0^1 = 1 + \frac{1}{2} - \frac{4}{3} = \frac{1}{6}$	A1 A1	
		$\Rightarrow \text{Area of shape is } \frac{1}{6} + \frac{1}{6} + 2 \times \frac{1}{6} + 2 \times \frac{1}{6} = 1$	M1 A1	