## MEI STRUCTURED MATHEMATICS

## METHODS FOR ADVANCED MATHEMATICS, C3

## Practice Paper C3-B

Additional materials: Answer booklet/paper<br>Graph paper<br>List of formulae (MF2)

TIME 1 hour 30 minutes

## INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- There is an Insert booklet for use in Question 9.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.


## INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.


## Section A (36 marks)

1 Prove that the product of any three consecutive integers is a multiple of 6 .
2 (i) Sketch the graph of $y=|2 x-3|$.
(ii) Hence, or otherwise, solve the inequality $|2 x-3|<5$. Illustrate your answer on your graph.

3 Differentiate the following functions.
(i) $\quad y=\left(x^{2}+3\right)^{5}$
(ii) $y=\frac{\sin 2 x}{x}$

4 A curve has equation $y^{2}=5 x-4$.
Find the gradient of the curve at the points where $x=8$.

5 Given that $x$ and $t$ are related by the formula $x=x_{0} \mathrm{e}^{-3 t}$, show that $t=\ln \left(\frac{a}{x}\right)^{b}$ where $a$ and $b$ are to be determined.

6 (i) Find $\int(2 x-3)^{7} \mathrm{~d} x$.
(ii) Use the substitution $u=x^{2}+1$, or otherwise, to find $\int_{1}^{2} x\left(x^{2}+1\right)^{3} \mathrm{~d} x$.

7 The functions $f, g$ and $h$ are defined as follows.

$$
\mathrm{f}(x)=2 x \quad \mathrm{~g}(x)=x^{2} \quad \mathrm{~h}(x)=x+2
$$

Find each of the following as functions of $x$.
(i) $\mathrm{f}^{2}(x)$,
(ii) $\operatorname{fgh}(x)$,
(iii) $\mathrm{h}^{-1}(x)$.

## Section B (36 marks)

8 A curve has equation $y=(x+2) \mathrm{e}^{-x}$.
(i) Find the coordinates of the points where the curve cuts the axes.
(ii) Find the coordinates of the stationary point, S , on the curve.
(iii) By evaluating $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at S , determine whether the stationary point is a maximum or a minimum.
(iv) Sketch the curve in the domain $-3<x<3$.
(v) Find where the normal to the curve at the point $(0,2)$ cuts the curve again.
(vi) Find the area of the region bounded by the curve, the $x$-axis and the lines $x=1$ and $x=3$.

## 9 Answer parts (i) and (iii) on the insert provided.

Fig. 9 shows a sketch graph of $y=f(x)$.


Fig. 9
(i) On the Insert sketch graphs of
(A) $y=2 \mathrm{f}(x)$,
(B) $y=\mathrm{f}(-x)$,
(C) $y=\mathrm{f}(x-2)$

In each case describe the transformations.
(ii) Explain why the function $y=\mathrm{f}(x)$ does not have an inverse function.
(iii) The function $\mathrm{g}(x)$ is defined as follows:

$$
\mathrm{g}(x)=\mathrm{f}(x) \text { for } x \geq 0
$$

On the Insert sketch the graph of $y=\mathrm{g}^{-1}(x)$.
(iv) You are given that $\mathrm{f}(x)=x^{2}(x+2)$.

Calculate the gradient of the curve $y=\mathrm{f}(x)$ at the point $(1,3)$.
Deduce the gradient of the function $\mathrm{g}^{-1}(x)$ at the point where $x=3$.
(v) Show that $\mathrm{g}(x)$ and $\mathrm{g}^{-1}(x)$ cross where $x=-1+\sqrt{2}$.

## MEI STRUCTURED MATHEMATICS

# METHODS FOR ADVANCED MATHEMATICS, C3 

## Practice Paper C3-B <br> INSERT

## INSTRUCTIONS

- $\quad$ This insert should be used for question 9.
- Write your name in the space at the top of this sheet.
- Attach this insert to the rest of your answers.


## Insert for question 9.

(i) (A) On the axes below sketch the graph of $y=2 \mathrm{f}(x)$. Describe the transformation.


Description:
(i) (B) On the axes below sketch the graph of $y=\mathrm{f}(-x)$.

Describe the transformation.


Description:
(i) (C) On the axes below sketch the graph of $y=\mathrm{f}(x-2)$.

Describe the transformation.


Description:
(iii) The function $\mathrm{g}(x)$ is defined as follows:

$$
\mathrm{g}(x)=\mathrm{f}(x) \text { for } x \geq 0
$$

On the axes below sketch the graph of $y=\mathrm{g}^{-1}(x)$.


# MEI STRUCTURED MATHEMATICS 

## METHODS OF ADVANCED MATHEMATICS, C3

## Practice Paper C3-B

## MARK SCHEME

| Qu |  | Answer | Mark | Comment |
| :---: | :---: | :---: | :---: | :---: |
| Section A |  |  |  |  |
| 1 |  | Call the numbers $n, n+1$ and $n+2$ <br> At least one of the numbers is even, and so the product is a multiple of 2. <br> If $n$ is a multiple of 3 then so is the product. <br> If $n=3 k+1$ then $n+2$ is a multiple of 3 <br> If $n=3 k+2$ then $n+1$ is a multiple of 3 . <br> $n$ must have one of the forms $3 k, 3 k+1$ or $3 k+2$. <br> Therefore whichever it is one of the three numbers is a multiple of 3 and so the product is a multiple of 3 . <br> Since it is also a multiple of 2 it is a multiple of 6 . | B1 <br> M1 <br> M1 <br> E1 <br> 4 | Algebra Divisibility by 2 Divisibility by 3 conclusion |
| 2 | (i) |  | B1 B1 $2$ | Right part <br> Left part |
|  | (ii) | Line $y=5$ to be shown on graph. $-1<x<4$ | $\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } \\ & \\ & \\ & \end{array}$ |  |
| 3 | (i) | $\begin{gathered} y=\left(x^{2}+3\right)^{5} \quad \text { Let } u=x^{2}+3 \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 x \\ y=u^{5} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} u}=5 u^{4} \\ \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=5 u^{4} \times 2 x=10 x\left(x^{2}+3\right)^{4} \end{gathered}$ | M1 <br> A1 <br> A1 <br> 3 | Chain rule $\frac{\mathrm{d} y}{\mathrm{~d} u}$ |
|  | (ii) | $\begin{gathered} y=\frac{\sin 2 x}{x} \quad \text { Let } u=\sin 2 x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 \cos 2 x \\ v=x \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}=1 \\ \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}=\frac{2 x \cos 2 x-\sin 2 x}{x^{2}} \end{gathered}$ | M1 <br> A1 <br> A1 | Quotient rule |
| 4 |  | $\begin{aligned} & y^{2}=5 x-4 \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=5 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{5}{2 y} \\ & \text { When } x=8, y^{2}=36 \Rightarrow y= \pm 6 \\ & \Rightarrow \text { gradients }=\frac{5}{12} \text { and }-\frac{5}{12} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |  |


| 5 |  | $\begin{aligned} & x=x_{0} \mathrm{e}^{-3 t} \Rightarrow \mathrm{e}^{3 t}=\frac{x_{0}}{x} \\ & \Rightarrow 3 t=\ln \left(\frac{x_{0}}{x}\right) \Rightarrow t=\frac{1}{3} \ln \left(\frac{x_{0}}{x}\right) \\ & \Rightarrow t=\ln \left(\frac{x_{0}}{x}\right)^{\frac{1}{3}} \end{aligned}$ <br> i.e. $a=x_{0}, b=\frac{1}{3}$ | M1 <br> A1 <br> A1 <br> A1 <br> 4 | Take logs <br> or any equivalent method |
| :---: | :---: | :---: | :---: | :---: |
| 6 | (i) | $\begin{aligned} & \int(2 x-3)^{7} \mathrm{~d} x . \quad \text { Let } u=2 x-3, \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 \Rightarrow \mathrm{~d} x=\frac{1}{2} \mathrm{~d} x \\ & =\int \frac{1}{2} u^{7} \mathrm{~d} u=\frac{u^{8}}{2 \times 8}=\frac{1}{16}(2 x-3)^{8}+c \end{aligned}$ | M1 <br> A1 <br> A1 <br> 3 | or B3 cao |
|  | (ii) | The substitution $u=x^{2}+1$ gives $\frac{\mathrm{d} u}{\mathrm{~d} x}=2 x$ $\begin{aligned} & \Rightarrow \int_{1}^{2} x\left(x^{2}+1\right)^{3} \mathrm{~d} x \quad=\int_{2}^{5} \frac{1}{2} u^{3} \mathrm{~d} u \\ & =\left[\frac{u^{4}}{8}\right]_{2}^{5} \\ & =\frac{609}{8}\left(=76 \frac{1}{8}\right) \end{aligned}$ | $\begin{array}{\|cc} \text { M1 } & \\ \text { A1 } & \\ \hline & 5 \\ \hline \end{array}$ | Using sub <br> Correct int <br> Correct limits <br> Int <br> Ans |
| 7 | (i) | $\mathrm{f}^{2}(x)=4 x$ | $\begin{array}{ll} \hline \text { B1 } \\ \hline \end{array}$ |  |
|  | (ii) | $\begin{aligned} \operatorname{fgh}(x) & =\operatorname{fg}(x+2) \\ & =\mathrm{f}(x+2)^{2} \\ & =2(x+2)^{2} \end{aligned}$ | $\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ & \\ \hline \end{array}$ | correct order of functions |
|  | (iii) | $\begin{aligned} y & =\mathrm{h}(x) \\ & =x+2 \\ \Rightarrow x & =y-2 \\ \mathrm{~h}^{-1}(x) & =x-2 \end{aligned}$ | B1 $\quad 1$ |  |


|  | n B |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 8 | (i) | $\begin{aligned} & \quad 0=(x+2) e^{-x} \\ & \Rightarrow x=-2 \\ & \text { so }(-2,0) \text { and }(0,2) \end{aligned}$ | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ & 2 \\ \hline \end{array}$ |  |
|  | (ii) | $\begin{aligned} & y=(x+2) e^{-x} \\ & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-e^{-x}(x+1)=0 \Rightarrow x=-1 \end{aligned}$ <br> SP is $(-1, e)$ | M1 <br> A1 <br> M1 <br> A1 <br> 4 | Product rule $=0$ |
|  | (iii) | $\Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=x e^{-x}$ <br> At $(-1, \mathrm{e})$ this is negative, so SP is a maximum. | $\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ & \end{array}$ |  |
|  | (iv) |  | B1 |  |
|  | (v) | At $(0,2)$ gradient is -1 so gradient of normal is 1 Normal is $y=x+2$. $\begin{aligned} & y=x+2, y=(x+2) e^{-x} \\ & \Rightarrow 0=(x+2)\left(1-e^{-x}\right) \\ & \Rightarrow x=-2(\text { or } 0) \end{aligned}$ <br> New intersection point is $(-2,0)$. | B1 <br> M1 <br> A1 $3$ |  |
|  | (vi) | Required area is $\begin{aligned} & \int_{1}^{3}(x+2) e^{-x} d x \\ & =\left[-e^{-x}(x+2)\right]_{1}^{3}+\int_{1}^{3} e^{-x} d x \\ & =\left[-e^{-x}(x+2)\right]_{1}^{3}+\left[-e^{-x}\right]_{1}^{3} \\ & =\frac{-6}{e^{3}}+\frac{4}{e} \end{aligned}$ | B1 <br> M1 <br> A1 <br> A1 <br> A1 <br> 5 | or equivalent |


| 9 | $\begin{aligned} & \text { (i) } \\ & \text { (A) } \end{aligned}$ |  <br> The transformation is a stretch with the $x$-axis invariant and of scale factor 2. | B1 <br> B1 | Same orientation <br> $y$ values doubled |
| :---: | :---: | :---: | :---: | :---: |
|  | (i) <br> (B) |  <br> The transformation is a reflection in the $y$-axis. | B1 <br> B2 | same shape <br> Inversion |
|  | $\begin{aligned} & \text { (i) } \\ & \text { (C) } \end{aligned}$ |  <br> The transformation is a translation of 2 units parallel to the $x$-axis, ie $\binom{2}{0}$ | B1 <br> B2 <br> 3 | Same shape <br> Moved 2 to the right |
|  | (ii) | There is a set of values of $y$ (for example, $y=1$ ) for which there are three corresponding values of x (so an inverse would be multivalued). | $\begin{array}{\|ll\|} \hline \text { B1 } & \\ & \\ \text { B1 } & \\ & 2 \end{array}$ |  |
|  | (iii) |  | B1 |  |
|  | (iv) | $\begin{aligned} & \mathrm{f}(x)=x^{2}(x+2) \\ & \Rightarrow \mathrm{f}^{\prime}(x)=3 x^{2}+4 x \end{aligned}$ <br> So the gradient at $(1,3)$ is 7 . <br> The gradient on the inverse (which is a reflection of the original in $y=x$ ) is therefore $-1 / 7$. | M1 <br> A1 <br> M1 <br> A1 <br> 4 |  |
|  | (v) | The graph and its reflection must intersect on the axis of reflection, ie $\mathrm{y}=x$, so solve $\begin{aligned} & y=x, y=x^{2}(x+2) \\ & \Rightarrow x=x^{2}(x+2) \\ & \Rightarrow 0=x\left(x^{2}+2 x-1\right) \\ & \Rightarrow x=0,-1 \pm \sqrt{2} \end{aligned}$ <br> The positive non-zero root is as given. | $\begin{array}{ll} \text { M1 } \\ \text { M1 } & \\ \text { M1 } & \\ \text { E1 } & \\ & 3 \end{array}$ |  |

