

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

METHODS FOR ADVANCED MATHEMATICS, C3

Practice Paper C3-B

Additional materials:	Answer booklet/paper
	Graph paper
	List of formulae (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- There is an Insert booklet for use in Question 9.
- Answer **all** the questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.
- You are reminded of the need for clear presentation in your answers.

Section A (36 marks)

1	Prov	the that the product of any three consecutive integers is a multiple of 6.	[4]
2	(i)	Sketch the graph of $y = 2x-3 $.	[2]
	(ii)	Hence, or otherwise, solve the inequality $ 2x-3 < 5$. Illustrate your answer on your graph.	[2]

3 Differentiate the following functions.

(i)
$$y = (x^2 + 3)^3$$
 [3]

$$y = \frac{\sin 2x}{x}$$
[3]

4 A curve has equation $y^2 = 5x - 4$. Find the gradient of the curve at the points where x = 8.

Find the gradient of the curve at the points where x = 8. [5]

5 Given that x and t are related by the formula $x = x_0 e^{-3t}$, show that $t = \ln\left(\frac{a}{x}\right)^b$ where a and b are to be determined. [4]

6 (i) Find
$$\int (2x-3)^7 dx$$
. [3]

(ii) Use the substitution
$$u = x^2 + 1$$
, or otherwise, to find $\int_{1}^{2} x(x^2 + 1)^3 dx$. [5]

7 The functions f, g and h are defined as follows.

$$f(x) = 2x$$
 $g(x) = x^2$ $h(x) = x + 2$

Find each of the following as functions of *x*.

- (i) $f^{2}(x)$, [1]
- (ii) fgh(x), [3]
- (iii) $h^{-1}(x)$. [1]

Section B (36 marks)

8

A cu	rve has equation $y = (x+2)e^{-x}$.	
(i)	Find the coordinates of the points where the curve cuts the axes.	[2]
(ii)	Find the coordinates of the stationary point, S, on the curve.	[4]
(iii)	By evaluating $\frac{d^2 y}{dx^2}$ at S, determine whether the stationary point is a maximum or a minimum.	[3]
(iv)	Sketch the curve in the domain $-3 < x < 3$.	[1]
(v)	Find where the normal to the curve at the point $(0, 2)$ cuts the curve again.	[3]
(vi)	Find the area of the region bounded by the curve, the <i>x</i> -axis and the lines $x = 1$ and $x = 3$.	[5]

9 Answer parts (i) and (iii) on the insert provided.

Fig. 9 shows a sketch graph of y = f(x).

Fig. 9

(i) On the Insert sketch graphs of

(A) y = 2f(x), (B) y = f(-x), (C) y = f(x-2)

	In each case describe the transformations.	[8]
(ii)	Explain why the function $y = f(x)$ does not have an inverse function.	[2]
(iii)	The function $g(x)$ is defined as follows: $g(x) = f(x)$ for $x \ge 0$	
	On the Insert sketch the graph of $y = g^{-1}(x)$.	[1]
(iv)	You are given that $f(x) = x^2(x + 2)$. Calculate the gradient of the curve $y = f(x)$ at the point (1, 3).	

- Calculate the gradient of the curve y = f(x) at the point (1, 3). Deduce the gradient of the function $g^{-1}(x)$ at the point where x = 3. [4]
- (v) Show that g(x) and $g^{-1}(x)$ cross where $x = -1 + \sqrt{2}$. [3]

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

METHODS FOR ADVANCED MATHEMATICS, C3

Practice Paper C3-B INSERT

INSTRUCTIONS

- This insert should be used for question **9**.
- Write your name in the space at the top of this sheet.
- Attach this insert to the rest of your answers.

Insert for question 9.

(i) (A) On the axes below sketch the graph of y = 2f(x). Describe the transformation.

> 5 у 4 3 2 1 х --5 -5 -3 -2 ż 3 -4 -1 1 4 -1 -2 -3 -4 -6

Description:

(i) (*B*) On the axes below sketch the graph of y = f(-x). Describe the transformation.

Description:

[3]

(i) (*C*) On the axes below sketch the graph of y = f(x - 2). Describe the transformation.

Description:

(iii) The function g(x) is defined as follows: g(x) = f(x) for $x \ge 0$

On the axes below sketch the graph of
$$y = g^{-1}(x)$$
. [1]

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

METHODS OF ADVANCED MATHEMATICS, C3

Practice Paper C3-B

MARK SCHEME

© MEI February 2005

Qu		Answer	Mark	Comment
Sect	ion A			
1		Call the numbers n , $n + 1$ and $n + 2$ At least one of the numbers is even, and so the product is a multiple of 2.	B1 M1	Algebra Divisibility by 2
		If <i>n</i> is a multiple of 3 then so is the product. If $n = 3k + 1$ then $n + 2$ is a multiple of 3 If $n = 3k + 2$ then $n + 1$ is a multiple of 3.	M1	Divisibility by 3
		<i>n</i> must have one of the forms $3k$, $3k + 1$ or $3k + 2$. Therefore whichever it is one of the three numbers is a multiple of 3 and so the product is a multiple of 3. Since it is also a multiple of 2 it is a multiple of 6	E1	conclusion
2	(i)	Since it is also a multiple of 2 it is a multiple of 6.	81 B1	Right part
			B1 2	Left part
	(ii)	Line $y = 5$ to be shown on graph. -1 < $x < 4$	M1 A1 2	
3	(i)	$y = (x^2 + 3)^5$ Let $u = x^2 + 3 \Rightarrow \frac{du}{dx} = 2x$	M1 A1	Chain rule $\frac{dy}{du}$
		$y = u^{5} \Longrightarrow \frac{dy}{du} = 5u^{4}$ $\Longrightarrow \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = 5u^{4} \times 2x = 10x(x^{2} + 3)^{4}$	A1 3	
	(ii)	$y = \frac{\sin 2x}{x} \text{Let } u = \sin 2x \Rightarrow \frac{du}{dx} = 2\cos 2x$ $v = x \Rightarrow \frac{dv}{dx} = 1$	M1 A1	Quotient rule
			A1	
4		$\Rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{2x\cos 2x - \sin 2x}{x^2}$ $y^2 = 5x - 4 \Rightarrow 2y\frac{dy}{dx} = 5 \Rightarrow \frac{dy}{dx} = \frac{5}{2y}$	3 M1 A1	
		When $x = 8$, $y^2 = 36 \Rightarrow y = \pm 6$ \Rightarrow gradients $= \frac{5}{12}$ and $-\frac{5}{12}$	A1 A1 A1 5	

]
5		$x = x_0 e^{-3t} \Longrightarrow e^{3t} = \frac{x_0}{x}$			
		$\Rightarrow 3t = \ln\left(\frac{x_0}{x}\right) \Rightarrow t = \frac{1}{3}\ln\left(\frac{x_0}{x}\right)$	M1 A1		Take logs
		$\implies t = \ln\left(\frac{x_0}{x}\right)^{\frac{1}{3}}$			
		i.e. $a = x_0, \ b = \frac{1}{3}$	A1 A1	4	or any equivalent method
6	(i)	$\int (2x-3)^7 dx. \qquad \text{Let } u = 2x-3, \frac{du}{dx} = 2 \Longrightarrow dx = \frac{1}{2} dx$	M1 A1		
		$\int (2x-3)^7 dx. \qquad \text{Let } u = 2x-3, \ \frac{du}{dx} = 2 \Longrightarrow dx = \frac{1}{2} dx$ $= \int \frac{1}{2} u^7 du = \frac{u^8}{2 \times 8} = \frac{1}{16} (2x-3)^8 + c$	A1		or B3 cao
		2 2/0 10		3	
	(ii)	The substitution $u = x^2 + 1$ gives $\frac{du}{dx} = 2x$	M1		Using sub
		$\Rightarrow \int_1^2 x(x^2+1)^3 \mathrm{d}x = \int_2^5 \frac{1}{2}u^3 \mathrm{d}u$	A1		Correct int
		$=\left[\frac{u^4}{8}\right]_2^5$	A1		Correct limits
			A1		Int
		$=\frac{609}{8}(=76\frac{1}{8})$	A1	5	Ans
7	(i)	$f^2(x) = 4x$	B1	1	
	(ii)	fgh(x) = fg(x+2)	M 1		correct order
		$= f(x+2)^2$	A1 A1		of functions
		$=2(x+2)^2$		3	
	(iii)	$y = \mathbf{h}(x)$			
		= x + 2			
		$\Rightarrow x = y - 2$	B1		
		$\mathbf{h}^{-1}(x) = x - 2$		1	

Sect	ion B				
8	(i)	$0 = (x+2)e^{-x}$ $\Rightarrow x = -2$ so (-2,0) and (0,2)	B1 B1	2	
	(ii)	$y = (x+2)e^{-x}$ $\Rightarrow \frac{dy}{dx} = -e^{-x}(x+1) = 0 \Rightarrow x = -1$	M1 A1 M1		Product rule
		SP is (-1, <i>e</i>)	A1	4	
	(iii)	$\Rightarrow \frac{d^2 y}{dx^2} = xe^{-x}$ At (-1,e) this is negative, so SP is a maximum.	M1 A1 A1	3	
	(iv)		B1	1	
	(v)	At (0,2) gradient is -1 so gradient of normal is 1 Normal is $y = x + 2$. $y = x + 2$, $y = (x + 2)e^{-x}$ $\Rightarrow 0 = (x + 2)(1 - e^{-x})$ $\Rightarrow x = -2$ (or 0)	B1 M1 A1		
	(vi)	New intersection point is (-2,0). Required area is $\int_{1}^{3} (x+2)e^{-x} dx$ $= \left[-e^{-x}(x+2)\right]_{1}^{3} + \int_{1}^{3}e^{-x} dx$ $= \left[-e^{-x}(x+2)\right]_{1}^{3} + \left[-e^{-x}\right]_{1}^{3}$	B1 M1 A1 A1	3	or equivalent
		$=\frac{-6}{e^3}+\frac{4}{e}$	AI	5	or equivalent

9	(i) (A)		The transformation is a stretch with the <i>x</i> -axis invariant and of scale factor 2.	B1 B1	2	Same orientation y values doubled
	(i) (B)		The transformation is a reflection in the <i>y</i> -axis.	B1 B2	3	same shape Inversion
	(i) (C)		The transformation is a translation of 2 units parallel to the <i>x</i> -axis, ie $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	B1 B2	3	Same shape Moved 2 to the right
	(ii)	There is a set of values of <i>y</i> (for extension there are three corresponding value would be multivalued).		B1 B1	2	
	(iii)			B1	1	
	(iv)	f(x) = $x^2(x+2)$ ⇒ f'(x) = $3x^2 + 4x$ So the gradient at (1,3) is 7. The gradient on the inverse (which original in y = x) is therefore $\frac{-1}{7}$.	n is a reflection of the	M1 A1 M1 A1	4	
	(v)	The graph and its reflection must is reflection, ie y = x, so solve $y = x, y = x^2(x+2)$ $\Rightarrow x = x^2(x+2)$ $\Rightarrow 0 = x(x^2 + 2x - 1)$ $\Rightarrow x = 0, -1 \pm \sqrt{2}$ The positive non-zero root is as given		M1 M1 E1	3	