

1 hydrogen bond represented as, horizontal / vertical, dashed line between O on one molecule and H on the adjacent molecule;

DO NOT CREDIT if >1 H bond is drawn between the same two molecules

- 2 hydrogen / **H**, bond label (on any drawn bond between 2 molecules);
- 3 (delta positive) δ^+ on each drawn H and (delta negative) (2) δ^- on each drawn O;

if both molecules drawn, δ^+ and δ^- on **all** atoms. **ACCEPT** d (lower case) for δ

2. *ice floats*

P1 (ice less dense because) molecules spread out;

P2 molecules form, crystal structure / lattice / AW;

P3 ice forms insulating layer / clearly described;

e.g. acts as a barrier to the cold

P4 water (below ice), does not freeze / still liquid / remains water / kept at higher temperature;

S1 organisms do not freeze;

DO NOT ACCEPT die (because 'survival' stated in stem)

S2 animals / organisms, can still, swim / move;

S3 allows, currents / nutrients, to circulate;

[3]

solubility

P5 ions / named ion, polar / charged;

P6 ions /named ion, attracted to / bind to / interact with, water;

S4 (named) organisms / plants / animals, uptake / AW, minerals / named mineral / nutrients;

ACCEPT obtain / enters / goes in / gets

S5 correct use of named, mineral / nutrient, in organism;

needs to be more specific than 'for growth / metabolism' suitable examples include but are not limited to: nitrates for amino acids / protein / (named) nucleic acid / phosphate for ATP / phospholipids / plasma membrane / magnesium for chlorophyll etc

temperature stability

P7 many / stable, (hydrogen) bonds between molecules;

Many hydrogen bonds between molecules = 2 marks (gets P7 and H)

P8 at lot of energy to, force apart molecules / break bonds; ACCEPT heat as alternative to energy

P9 high (specific) heat capacity;

DO NOT CREDIT latent heat capacity

S6 temperature does not change much / small variation in temperature;

could refer to organisms **or** surrounding water **ACCEPT** stays cool in summer / stays warm in winter **DO NOT CREDIT** constant alone

S7 effect of temperature on, enzymes / metabolic rate;

ACCEPT any reference to temperature affecting enzyme activity / metabolic rate

S8 gases remain soluble;

Award once in any section

H hydrogen bonds;

DO NOT CREDIT if in incorrect context (e.g. they are strong bonds)

7 max

1

QWC - Award if you see a P mark **and** an S mark within the **same** section; Look for the S mark first, then award QWC if there is a **P** mark in the same section in the mark scheme

[8]

3. hydrolysis / hydrolytic; hydrophilic;

ACCEPT phonetic spelling throughout IGNORE head

1

4. (i) X;

3

(ii) 1 substrate / PABA, and, inhibitor / sulfonamide, similar shape;
 ACCEPT similar structure DO NOT CREDIT same

- 2 able to, bind / fit into / block, <u>active site;</u>
 - (shape) <u>complimentary</u> to <u>active site</u>;
 DO NOT CREDIT refs to PABA and sulfonamide being complementary to each other or to the enzyme (alone)
- 4 both have, hex / benzene / 6-C, (ring);
- 5 both have, NH_2 / amine;
- 6 correct ref to a difference between sulfonamide and PABA;
 - e.g. only sulfonamide contains S sulfonamide has 1 more NH₂ group sulfonamide has SONH₂ but PABA has N₂ only PABA has COOH group

[4]

3

5. (i) *without inhibitor*

- more, PABA / substrate, molecules enter <u>active site</u>:
 ACCEPT more successful collisions between substrate and active site
- 2 more, enzyme substrate complexes / ESCs, formed;
- at low concentration not all active sites occupied / at high concentration all active sites occupied;
 ACCEPT active sites filled / no free active sites DO NOT CREDIT active sites run out
- 4 achieves / reaches, max (turnover) rate / V_{max} ;

ACCEPT 'cannot work any quicker' DO NOT CREDIT 'optimum rate' or 'rate levels off'

5 (at high substrate concentration) enzyme <u>concentration</u> limiting;

- (ii) with inhibitor
 - 1 inhibitor / sulfonamide, can, fit / block / bind to / compete for, <u>active site;</u>
 - 2 (occupies it) for a short time / temporary / reversibly;
 - 3 fewer active sites available (for substrate) / AW; ACCEPT substrate can't access active site
 - 4 (idea of) more substrate reduces chance of inhibitor getting in; ACCEPT more ESC formed in context of overcoming inhibition / substrate can out-compete inhibitor

2 max

3

[5]

6.

(a) (i) L; M;

J;

If 2nd letter given, no mark

- (ii) **CREDIT** answers from clearly drawn diagrams with bonds labelled
 - 1 peptide bond; ACCEPT peptide link
 - 2 between, amine / J group (of one amino acid) and carboxyl / L group (of another);
 - 3 H (from amine group) combines with OH (from carboxyl group);
 - 4 condensation reaction
 OR
 water, lost / eliminated / produced / created / AW;
 - 5 covalent;

- (b) **1** some R groups, attract / repel;
 - 2 <u>di</u>sulfide, bridges / bond;
 - **3** between, cysteine / SH / S (atoms);
 - 4 hydrogen / H, bonds; DO NOT CREDIT in context of secondary structure
 - 5 ionic bonds between, oppositely charged / + and –, R groups;
 - 6 hydrophilic R groups, on outside of molecule / in contact with water (molecules);
 - 7 hydrophobic R groups, on inside of molecule / shielded from water (molecules);

[10]

4 max

7. (i)

AWARD 1 mark per correct row Comparative statements must be made in a row

glycogen	collagen	
carbohydrate / polysaccharide	protein / polypeptide	;
(alpha) glucose (units)	amino acid (units)	;
identical units	different amino acid units	;
glycosidic, bonds / links	peptide, bonds / links	;
branched	unbranched / linear	;
non-helical	helical	;
one chain (per molecule)	three chains (per molecule)	;
no cross links	cross links (between chains)	;
contains C H O	contains C H O N	;
	carbohydrate / polysaccharide (alpha) glucose (units) identical units glycosidic, bonds / links branched non-helical one chain (per molecule) no cross links	carbohydrate / polysaccharideprotein / polypeptide(alpha) glucose (units)amino acid (units)identical unitsdifferent amino acid unitsglycosidic, bonds / linkspeptide, bonds / linksbranchedunbranched / linearnon-helicalhelicalone chain (per molecule)three chains (per molecule)no cross linkscross links (between chains)

- 2 DO NOT CREDIT beta
- 5 ALLOW straight
- 7 DO NOT CREDIT strands
- 9 IGNORE S (for collagen)

(ii)	(high tensile) strength / strong;
	IGNORE fibrous / tough
	does not stretch / is not elastic;
	insoluble;
	flexible;
	Mark the 1 st answer on each numbered line

			2 max	[5]
8.	(i)	<u>de</u> oxyrib <u>ose</u> (sugar);		
		phosphate (group);		
		DO NOT CREDIT dioxyribose		
		DO NOT CREDIT phosphate head or phosphate backbone		
		(nitrogenous / purine or pyrimidine) base / one correctly named base;		
		DO NOT CREDIT letter instead of named base		
		DO NOT CREDIT uracil		
		DO NOT CREDIT incorrect spelling of thymine with 'a'		
			3	
	(ii)	has ribose;		
		uracil / U, instead of, thymine / T;		
		DO NOT CREDIT incorrect spelling of thymine with 'a'		
		single stranded;		
		3 forms / AW;		
		assume answer refers to RNA unless otherwise stated		
			2 max	[5]
				[5]

9.		1	untwist / unwind; DO NOT CREDIT unravel		
	S	2	unzip / described; DO NOT CREDIT strands separating without qualification		
	S	3	H bond breaks;		
		4	both strands act as template;		
	Ν	5	(aligning of) free (DNA) <u>nucleotides;</u> DO NOT CREDIT bases		
	Ν	6	complementary, base / nucleotide, pairing;		
	Ν	7	C to G <u>and</u> T to A / purine to pyrimidine; 6 & 7 Do not consider for QWC if mark awarded in the context of breaking apart or DNA structure only, rather than forming new double helix		
	R	8	hydrogen bonds reform;		
	R	9	sugar-phosphate back bone forms;		
	R	10	(using) covalent / phosphodiester, bond;		
		11	semi-conservative replication;		
		12	DNA polymerase;		
			CREDIT at any stage in the process		
		13	AVP; e.g. ligase / helicase / gyrase used in correct context $C - G \ 3 \ H \ bonds \ / T - A \ 2 \ H \ bonds$ activation of free nucleotides (with 2 phosphates) synthesis in the 5' to 3' direction Okazaki fragments on lagging strand	6 max	
	QW	C - cor	<pre>rect sequence - 1 S mark, then 1 N mark, then 1 R mark; It should be clear that candidate realises that the sequence is S, then N then R - even if not written in that order DO NOT CREDIT if any ref to transcription / translation</pre>	1	[7]
10.	(i)	polyp	peptide / protein / primary structure / a sequence of amino acids;		[7]

DO NOT CREDIT 'codes for an amino acid' IGNORE enzyme / named protein

(ii) different, sequence of amino acids / primary structure / AW;
 different protein / protein folds up differently / different tertiary structure;
 (product) no longer functions / different function;

DO NOT CREDIT 'product' or incorrect biochemical (e.g. carbohydrate) **ACCEPT** suitable example, e.g. active site of enzyme no longer complimentary to substrate

2 max

11. double helix; anti-parallel; sugar-phosphate; hydrogen;

[4]

[3]

12. (i) percentages / amount, C & G similar (in all organisms); percentages / amount, A & T similar (in all organisms);

<u>different</u> / named, <u>organisms</u> have different proportions of, bases / named base / AW; greatest similarity between human and grasshopper; least similarity between *E coli* and the other three; *E. coli* has similar proportions of all bases / *E.coli* has <u>slightly</u> more CG than AT / (named) eukaryote has more AT than CG;

> mp 1 & 2 DO NOT CREDIT ref to a single organism
> mp 1 & 2 IGNORE ref to complementary
> DO NOT CREDIT statements in context of organism size
> e.g. statement that human has more A than E. coli / human has the most AT / E. coli has the most CG

This mark is for a general statement

comparative figs with units to support any statement;

e.g. human C = 19.8<u>% and</u> G = 19.9<u>%</u> human A = 30.9<u>% and</u> E. coli A = 24.7<u>%</u>

'human has more A (30.9%) than wheat (27.3%)' = 2 (mp 3 & 7)

(ii) (suggests) A, bonds / pairs / links / connects / joins, to T; (suggests) C, bonds / pairs / links / connects / joins, to G; (suggests) purine bonds to pyrimidine; (evidence for) complementary base pairing / which bases pair with each other / base pairing rules; suggests bases point 'inwards' rather than 'outwards';

> IGNORE A - T or A = T unqualified IGNORE C - G or C = G unqualified ACCEPT 'bond' instead of 'pair'

> > 2 max

[5]

13. Award 1 mark per correct row

feature	DNA	RNA	
number of strands	two / double	one / single	;
bases present	thymine / T (+ adenine + cytosine + guanine)	uracil / U (+ adenine + cytosine + guanine)	;
sugar present	deoxyribose	ribose	;

If a choice of answers is given, do not credit unless both answers are valid (e.g. two and double strands for DNA / ribose and pentose sugar)

ACCEPT letters instead of names of bases Names of bases must be unambiguous, so DO NOT CREDIT adenosine / thiamine / cysteine / etc. If more bases mentioned than T and U, then all bases must be included

DO NOT CREDIT dioxyribose / oxyribose/ hexose / sugar **IGNORE** pentose

[3]

14.	carri	es / tra	ansfer	rs, the (complementary DNA), code / <u>genetic</u> information / copy of gene;		
	(tran		t) to t			
				IGNORE transcription DO NOT CREDIT ref to the <u>whole</u> DNA code / molecule		
				ACCEPT 'to make protein'		[2]
15.	(a)	(i)	A B	hydrogen; glycosidic;		
				DO NOT CREDIT 'H bond' as this is not a name Correct spelling only. IGNORE α or β or numbers		
				IGINORE a or p or numbers	2	
		(ii)	hyc	drolysis / addition of water;	1	
		(iii)	<u>β</u> /	<u>beta</u> , glucose;		
				Must be qualified as β or beta or B or b	1	
	(b)			are <u>specific;</u> hydrate molecules / substrates, are different <u>shapes;</u>		
		so th	nat su	e and substrate are complementary; bstrate will fit / formation of ESC; key / induced fit;		

(c) (i) pH <u>much</u>, higher / less acidic, than optimum (for enzyme 2);

Needs idea of <u>much</u> greater or too high **DO NOT CREDIT** just 'higher than' or 'above' **DO NOT CREDIT** too / more, alkaline

change in charge of active site; hydrogen / ionic, bonds <u>break;</u>

tertiary structure / 3D shape / active site shape, altered; enzyme / tertiary structure, <u>denatured</u>;

DO NOT CREDIT peptide / disulphide, bonds break **DO NOT CREDIT** in context of heat / vibration

IGNORE ref to denaturing active site

IGNORE ref to denaturing active site **DO NOT CREDIT** kill / die

substrate no longer fits active site / ESC does not form;

'substrate doesn't bind to enzyme' is not quite enough

3 max

(ii) Mark 1st response on each numbered line unless no answer on one line, then mark 1st 2 answers temperature; substrate concentration; enzyme concentration;

IGNORE ref to time

2 max

[12]

16. Marking points 2 – 6 can be applied to the standard solutions or the sample

- 1 using, standard / known, concentrations (of reducing sugar);
- 2 <u>heat</u> with, Benedicts (solution) / $CuSO_4$ + NaOH;
- 3 (use of) same volumes of solutions (each time);
- 4 (use of) excess Benedicts;
- 5 changes to, green / yellow / orange / brown / (brick) red;
- 6 remove precipitate / obtain filtrate;
- 7 calibrate / zero, colorimeter;

- 8 using, a blank / water / unreacted Benedicts;
- 9 use (red) filter;
- 10 reading of, transmission / absorbance;
- 11 more transmission / less absorbance, of filtrate = more sugar present; ora
- 12 (obtain) <u>calibration</u> curve;
- 13 <u>plotting</u>, transmission / absorbance, against (reducing) sugar concentration;
- 14 use reading of unknown sugar solution and read off graph to find conc.;

e.g. serial dilutions ALLOW boil / > 80°C DO NOT CREDIT warm DO NOT CREDIT amount / quantity CREDIT description of method e.g. filtering / centrifuging & decanting

ACCEPT 'measure how much light, does / does not,

pass through'

If precipitate is **clearly indicated** as being present in sample, **ALLOW** 'less transmission / more absorbance, = more sugar present'

breaking (glycosidic) bond;
 glycosidic / correct bond drawn;
 addition of water / H₂O;

R if incorrect named bond treat 'covalent' = neutral

max 2

[2]

[6]

	gum arabic	amylase	cellulose	glycogen
branched structure		no;		yes;
heteropolysaccharide		no;		no;
found in animals/plants		plants;		animals;
function in organism		storage / reserve; R 'energy' alone	<pre>structural / strength / stops bursting / cell wall / support / gives cell shape; R protects rigid = neutral</pre>	

19. (i) crush (small amount of) seed pod;

add (small volume of) biuret, A / NaOH, and biuret, B / CuSO₄; positive = colour change from blue to, mauve/purple;

max 2

- (ii) preparation allow 2 marks max:
 - 1 crush, samples / leaves and seed pods, separately with water;
 - 2 use same mass of each / AW and use same volume of water;
 - 3 filter;

method - allow 4 marks max:

- 4 add benedict's reagent to filtrate; A CuSO₄ in alkaline solution
- 5 <u>excess</u> reagent used / stated volume;
- 6 same volume added;
- 7 heat in a water bath/ at near boiling;
- 8 for stated time (up to 5 min);

analysis - allow 2 marks max:

<u>either</u>

- 9 colour change from blue to green / yellow / orange / red;
- 10 shows increasing concentration of reducing sugar;

<u>or</u>

- 11 use of centrifuge to remove precipitate;
- 12 use of colorimeter to compare intensity of blue colour in liquid portion;
- 13 red filter used in colorimeter;

	(iii)	humans eat only the seeds so do not gain, nutrition / energy, from, leaves / pods; seeds maybe deficient in (some) essential amino acids; cattle better at digesting, plant matter / seeds / leaves / pods, than humans / AW; meat (from cattle) provides more essential amino acids for humans (than plant material)/AW; cattle also produce milk; AVP; e.g. cattle naturally roam to find food / intensive labour needed for human collection of plant material;	max 3	13]
20.	(i)	<u>deoxyribose</u> sugar; a nitrogenous/ nitrogen containing, base / named base; ecf for thiamine phosphate group; AVP; e.g. deoxyribose is a pentose sugar/correct diagram of same		
			max 3	
	(ii)	hydrogen bonds between bases; <u>complementary</u> base pairing; purine to pyrimidine; A to T <u>and</u> G to C;		
		AVP; further detail e.g. 2 H bonds between A and T / 3 H bonds between A		
		C and G DNA polymerase	max 4	
				[7]
21.	uracil single	e (instead of deoxyribose); //U, replaces thymine; e stranded (instead of double stranded); er molecule / different 3-D structure to DNA;		[3]
22.	(a)	award two marks if correct answer (12) is given $6/30 / 6/0.5 \times 60$; 12;	2	

- (b) assume candidates are referring to the initial rate unless otherwise stated. concentration of, substrate / H₂O₂, molecules, high / higher at start; more chance of, substrate/ H₂O₂, molecules entering active site; all / most, active sites occupied; 3 [5] 23. at optimum temp - max 3 marks molecules in culture have kinetic energy; (frequent) collisions between enzyme and substrate molecules; more enzyme-substrate complexes formed; max rate of reaction / protein production achieved; at higher temp - max 5 marks (at higher temperature) molecules have more kinetic energy / collisions occur more frequently and with more energy; molecules vibrate and, bonds/ hydrogen bonds, broken; tertiary structure / 3D shape, of enzymes altered; active site loses, precise / complementary, shape;
 - enzymes are <u>denatured;</u>
 - substate molecule no longer fits active site;
 - (may be) irreversible so reaction/ protein production stops; ${\bf A}$ fungus destroyed

[8]

24.	(a)	(i)	Mark the first 2 types of biological molecule stated. Absence = neutral protein; A casein/polypeptide R amino acid reducing sugar(s); A correctly named reducing sugar(s) [but only lactose/galactose/glucose]	2
		(ii)	Mark the first 3 types of biological molecule stated. Absence = neutral	
			protein; A casein/polypeptide R amino acid reducing sugar(s); A correctly named reducing sugar(s) [but only lactose/galactose/glucose/fructose]	
			non-reducing sugar; A sucrose	3
	(b)	Assu	me 'it' = 'Health-Milk'	
		'Hea	lth – Milk' has	
		[but	reducing sugar(s); A correctly named reducing sugar(s) only lactose/galactose/glucose/fructose] non-reducing sugar; A sucrose	
		"less	s sugar'' = 1	

credit converse statements relating to 'Energy – Boost'.

	(c)	states 'no added sugar'/implies low sugar; contains more sugar than (fresh) milk/high in sugar; more reducing sugar (than milk); R ' <i>none in fresh milk</i> ' has non-reducing sugar (compared to none in milk); fruit (extract) must contain (hidden) sugar;	3 max	
	(d)	milk/drinks, already, milky/cloudy/white/opaque/'not see through'/emulsion; A 'positive result would not show up' R precipitate	1	[11]
25.	(i)	R statements linked to amylose/starch		
		max 3 if stated that glycogen <u>is</u> amylopectin		
		polymer/polysaccharide/described; (made of) <u>α</u> -glucose; joined by 1,4 links; glycosidic; (chain is) branched; 1,6 links where branches attach; AVP; e.g. compact detail of glycosidic bond	4 max	
	(ii)	condensation; A polymerisation	1	[5]
26.	(i)	37 <u>°C</u> ; A any figure in the range 35 – 40	1	
	(ii)	(enzyme) increases in <u>kinetic</u> energy; A 'too much <u>kinetic</u> energy' enzyme vibrates too much; breaks bonds; named eg; changes, tertiary/3-D, structure/shape, of <u>enzyme;</u> <u>active site</u> changes, shape/AW; substrate will not fit/no enzyme-substrate complex formed; enzyme denatured; will decrease rote/stars recetion;	4	
		will, decrease <u>rate</u> /stop reaction;	4 max	[5]

27. *1 mark per correct row*

Look for both ticks and crosses.

If a table consists of ticks ONLY or crosses ONLY, then assume that the blank spaces are the other symbol.

If a table consists of ticks, crosses and blanks then the blanks represent no attempt at the answer.

Nucleotides line up along an exposed DNA strand.	\checkmark	√ ;
The whole of the double helix 'unzips'.	\checkmark	X ;
Uracil pairs with adenine.	×	√ ;
A tRNA triplet pairs with an exposed codon.	×	X ;
Both DNA polynucleotide chains act as templates.	\checkmark	√ ;
Adjacent nucleotides bond, forming a sugar-phosphate backbone.	\checkmark	√ ;
The original DNA molecule is unchanged after the process.	×	√ ;
Adenine pairs with thymine.	\checkmark	√ ;

[8]

[3]

28. hydrolysis (of Hb); by enzymes; proteases; breaks peptide bonds; removal of haem group; reference to, diffusion/active transport/pinocytosis/channel proteins; AVP;
3 max

29. one mark for each correct row

if only ticks, assume that spaces are crosses; if only crosses, assume that spaces are ticks

R hybrid ticks

		statement					
substance	use heat	use biuret reagent	use Benedict's reagent	boil with a dilute acid	a positive result is a blue-bla ck colour	a positive result is an emulsion	
lipid	×	×	×	×	×	~	
protein	×	~	×	×	×	X ;	
starch	×	×	×	×	~	X ;	
reducing sugar	~	×	~	×	×	X ;	
non- reducing sugar	~	×	~	~	×	X ;	

[4]

30.	(i)	glycosidic; A covalent / C-O-C / oxygen bridge R oxygen bond / 'glucosidic'	1	
	(ii)	hydrolysis / hydrolytic; if qualified, needs to be correct	1	[2]
31.	1	no (suitable) enzyme (in gut) to digest sucralose /		
	2	sucrase will not act on sucralose / AW; enzymes, are specific / only act on one substrate;		
	3	complementary shape;		
	4	idea that (C/ on sucralose instead of OH) gives different, shape / structure;		
	5	no ESC (enzyme substrate complex) / substrate will not fit into active site;		
	6	AVP; e.g. further detail of enzyme-substrate interaction	4 max	[4]

32. 1 hydrogen bonding;

2 detail; e.g. (electro)negative oxygen atom can hydrogen bond to (electro)positive H atom/ one water molecule hydrogen bonds with up to 4 others / H bonds individually weak / large collective effect of many hydrogen bonds

coral algae

- 3 (high) thermal stability / temperature remains fairly constant;
- 4 water has high specific heat capacity;
- 5 much energy needed to break hydrogen bonds;

polar bears

- 6 cooling allows maximum number of hydrogen bonds to form;
- 7 water molecules space out to allow this;
- 8 water expands as it freezes / ice is less dense than water;

mussels, filter-feeders and sessile animals

- 9 water is transport medium for, food particles / gametes;
- 10 (tentacles / appendages / cilia) create currents bringing food;
- 11 ref. tides / ocean currents;
- 12 medium for, male gametes to swim / external fertilisation;
- 13 no desiccation of gametes;
- 14 ref to low viscosity / AW;

corals

- 15 minerals / ions, are soluble in water;
- 16 water is polar / detail of electrostatic attraction; A AW

seaweeds, fish eyes

- 17 water is transparent to light;
- 18 photosynthesis possible (in shallow water);
- 19 wavelength of light varies with depth;

whales, jellyfish

- 20 cohesion / water molecules stick to each other;
- 21 water not easily compressed;
- 22 gives support to large bodies / detail of upthrust or relative density;
- 23 acts as hydrostatic skeleton;
- 24 AVP; e.g. zonation / pigments
- 25 AVP; e.g. solubility of named gas linked to use in named organism 7 max

QWC – legible text with accurate spelling, punctuation and grammar

[8]

- 33. (i) not enough points plotted / experiment not carried out at enough (different) pH values; only 1 point between 3 + 4.3 / no points between 3.25 + 4.3; don't know / uncertainty of, rate between those points / where peak should be / where optimum is; 3.25 reading might be anomalous; cannot draw, curve / line of best fit; rises to, 3 / 3.25, and falls after 4.3; 2 max
 - (ii) *note ~ enzyme is completely inactive at pH 7*

loss of tertiary structure / loss of 3D structure / (enzyme) denatured; (change in pH/[H⁺]) alters charge distribution on (enzyme) molecule; hydrogen / ionic, bonds affected; changes (shape of) active site; enzyme substrate complex cannot be formed / substrate not attracted to active site / substrate cannot bind to active site / AW;

34. mark each section (E, S and C) to max shown

<u>E</u>	enzyme concentration ~	
1	reaction (rate) increases with increased enzyme; A high / low	
2	more active sites available;	
3	in excess substrate / as long as enough substrate (molecules available to occupy active site);	
4	(as reaction progresses) the rate will decrease as substrate, used up / becomes limiting; \mathbf{R} plateau	E (3 max)
<u>S</u>	substrate concentration ~	
1	reaction (rate) increases with increased substrate; \mathbf{A} high / low	
2	more, molecules available to enter active site / ESC formed; A more successful collisions	
3	reaches point where all active sites occupied;	
4	no further increase in rate / reaches V_{max} ; A plateau / levels off	
5	enzyme conc. becomes limiting / unless add more enzyme;	S

(3 max)

2 max

[4]

	<u>C</u>	com	petitive inhibitor ~			
	1	inhil	bitor has similar sha	pe to substrate;		
	2	can,	fit / occupy, active s	site;		
	3	for s	hort time / temporar	ry / reversible;		
	4	prev	ents / blocks, substr	ate from entering active site;		
	5	rate	determined by relati	ve concentrations;		
	6	little	inhibition / rate litt	le reduced, if substrate conc. > inhibitor conc.; a	ora	
	7	ref t	o chance of, substrat	te / inhibitor, entering active site;		
	8	effec	cts can be reversed b	by increasing substrate conc.;	C (5 max)	
		gene	eral points ~			
	10	draw	ving a suitable graph	to illustrate point made with labelled axes;		
	11	ref t	o <u>optimum</u> (rate);		9 max	
	QW	C ~ le	gible text with accu	irate punctuation, spelling and grammar	1	[10]
35.	(a)		ein / polypeptide, wi			
			ohydrate (chain) / po g lycogen	olysaccharide / sugar / glucose;	1	
	(b)	(i)	(a) helix; R doubl	e helix	1	
		(ii)	(β) pleat(ed) (shee		1	
	(c)		ary / 3°;		1	
	(-)		,			[4]
36.	solvo liqui dens	d; A s	ame			
		lates;	A keeps warm	R protects / warms		
	hydr	ogen;	A H / weak	$\mathbf{R} \operatorname{H}^+ / \operatorname{H}_2$	_	

hydrogen; **A** H / weak surface tension / cohesion;

[6]

37. cholesterol not soluble (in water) ; lipids / cholesterol, hydrophobic / non-polar ; glucose is (very) soluble (in water) ; glucose is, hydrophilic / polar ;

2 max

[2]

38. A correct formulae R choice (if contradictory)

type of molecule tested	reagents used	positive result	negative result
protein	biuret / copper sulphate and sodium (or potassium) hydroxide;	purple / mauve / lilac;	blue solution
fat / lipid / oil / triglyceride; A phospholipid	alcohol and water	white emulsion	clear liquid
starch	iodine (in potassium iodide solution);	blue-black / black;	yellow solution

39. (i) **R** references to fruit juice

use same <u>volume</u> of glucose solution;	
use same volume of Benedict's solution;	
use same concentration of Benedict's solution;	A strength / same batch
boil for the same length of time;	A heat
calibrate colorimeter / AW;	A same, filter / colorimeter 2 max

(ii) 6.5;

(iii)	hydrolyse, filtrate / juice / bond / non-reducing sugar;				
	either				
	with acid, neutralise / add alkali				
	or				
	treat with, sucrase / invertase;				
	either, if started with filtrate				
	boil with Benedict's + test filtrate / repeat original procedure; A heat				
	or, if started with juice				
	boil with Benedict's + test filtrate / repeat original procedure, to				
	measure difference in absorbance with original;	2 max			

[5]

40.	(i)	haemoglobin / haem; R Hb	1	
	(ii)	iron / Fe^{2+} / Fe^{3+} ; R ion / Fe / Fe^+	1	
				[2]
41.	(i)	breaking a bond with the addition of water; A named bond	1	
	(ii)	<u>fatty</u> (<u>acids</u> produced);		
		[H+] increased / more acidic / products are acidic / acids produced; 'fatty acids produced' = 2 marks	2	
	(iii)	do not credit, substrate used up / lack of enzyme / end product inhibition		
		pH, too low / not optimum; A <i>too acidic</i>		
		enzyme <u>denatured;</u> equilibrium reached;		
		further detail;	2 max	[5]
				[-]
42.		ces rate; A stops R inhibits		
	ints ii	nto, allosteric site / site other than active site; A ' <i>fits into active site <u>permanently</u></i> '		
		s, shape / charge, of active site; bstrate cannot, fit to active site / bind to active site / form ESC;		
		not reach V_{max} ;		
	incre	asing substrate concentration has no effect (on the rate);	3 max	[3]
				[0]
43.	(a)	R first reference to ^{15}N being radioactive		
		semi-conservative replication would give		
		1 one, template / original / old / parent, strand and one, new / daughter, strand;		
		2 complementary base pairing / joining of new nucleotides / other detail of forming the new strand;		
		data shows that		
		3 two isotopes in <u>molecule</u> / <u>molecule</u> contains both 14 N and 15 N;		
		4 one strand with, 'heavy' N / 15 N; R molecule		
		5 one strand with, 'light' N / 14 N; R molecule		
		6 no <u>molecules</u> with only, 1 isotope / ^{14}N / ^{15}N ;		
		some points, particularly 4 and 5, could be awarded for a		
		correctly labelled or keyed diagram	4 max	

	(b)	<i>correct answer only - do not accept from a selection</i> A; C; C <u>and</u> E;	3	
	(c)	1 band = 0 3 bands = 0 band drawn for ¹⁴ N <u>and</u> ¹⁴ N/ ¹⁵ N only; thick for ¹⁴ N <u>and</u> thin for ¹⁴ N/ ¹⁵ N;	2	[9]
44.	(no i state exerv use o	a low carbohydrate diet athlete can exercise for, not long / nore than) one hour; AW ora ment of trend observed; e.g. as carbohydrate in diet increases duration of cise increases / carbohydrate loading improves performance; AW ora of figures as a comparison; (look for 60, $125 - 130$, and $185 - 190$) to / three, times duration statements	3 max	[3]
45.	glyce glyce gluce to su more AVF	dise sugar once in the answer ogen is, source / store, of, energy / carbohydrate; ogen converted to glucose / glycogenolysis / glucogenesis; ose used in respiration; opply, energy / ATP, for muscle contraction; e glycogen stored will last longer; P; e.g. using muscle glycogen may be more efficient than sporting glucose from liver	2 max	[2]

46.	(i)	polypeptide; A oligopeptide	1	
	(ii)	glycine; A proline / alanine	1	
	(iii)	in this answer assume that chain = polypeptide molecule = groups of 3 polypeptide chains		
		A ecf for named amino acid from (ii) but NOT a name of a base amino acids / glycine, small (to allow close packing); the small one is, every 3 rd amino acid / at every level in the molecule; chains, form a tight coil / lie close to each other; held together by hydrogen bonds; <i>ignore other bonds</i>		
		bonds form between R groups of lysines; molecules form, fibres / bonds with adjacent molecules; A fibril covalent bond between, adjacent molecules / CO-NH groups; fibres composed of parallel molecules; ends of parallel molecules staggered;		
		prevents line of weakness;	2 max	[4]
47.	β / be glyco 180; straig	vall(s); eta; A B ssidic; NOT glucosidic eht; A polysaccharide / unbranched / linear ogen / H; NOT H ₂	6	[6]
48.	(i) (ii)	4; <u>deoxyribose</u> ; NOT ribose	1	
		phosphate; nitrogen(ous) / organic / named, base; A purine / pyrimidine NOT uracil NOT letter NOT thiamine / thyamine		
		take a correct base from a list unless that list includes uracil	3	[4]

- **49.** 1 <u>2</u>, molecules / helices, (of DNA) produced;
 - 2 identical (molecules of DNA produced);
 - **3** (each made up of) 1, original / parent / old, strand;
 - 4 1 new strand;
 - **5** original / parent / old, strand<u>s</u>, act as template / described;
 - 6 ref to (free DNA) nucleotides;

3 max

4 max

4 max

[3]

- 50. (a) idea that arachidonate is substrate; phospholipid source in membrane; prostaglandin / product, can be, transported / stored; (S)ER for, lipid / steroid, synthesis / transport; AVP; AVP; AVP; e.g. separate from other reactions cytoplasm environment not suitable for, reaction / enzyme ora idea that prostaglandin isolated COX does not, damage / use phospholipids from, other membranes
 2 max
 - (b) *ibuprofen*

competitive; ibuprofen blocks / arachidonate cannot enter, channel; A substrate cannot reach active site;

aspirin non-competitive; changes shape (of) / blocks; active site; AVP; e.g. <u>allosteric</u>

no ESC formed / AW; allow once only

(c) A reverse argument as long as question is answered in terms of low temperature

slows, reaction / rate / activity of enzyme / AW; ref kinetic energy; molecules moving, slowly / less; few collisions / collisions less likely; few ESC formed / ESC less likely to be formed; reversible / enzyme not denatured / enzyme still works; ref activation energy; ref $Q_{10} = 2$;

[10]

51.	simil	ar ~ allow valid similarities such as		
	same ring corre	e number, carbon / oxygen / hydrogen (atoms) / OH (groups); A hexose formula; R similar / molecule / ring with O (atom) in it; ect ref CH ₂ OH; ain C, H and O;	1 max	
		rent ~ assume candidate is writing about fructose unless told otherwise v valid differences such as		
	(in fi diffe ref a	 tose has) 5-membered ring / glucose has 6-membered ring; R pentose (4 C in ring v. 5C in ring / furanose v. pyranose in glucose) puctose) 2 CH₂OH side chains / 1 CH₂OH side chain in glucose; rent angles between C atoms; lignment of H and OH groups (on carbon 3 / carbon 4); puctose) carbon 1 not in ring / carbon 1 in ring in glucose; 	1 max	[2]
52.	(i)	glycosidic; NOT glucosidic	1	
	(ii)	1 carbon positions 1 and 2 on glucose and fructose;		
		2 formation of, water / H_2O , from 2 OH groups (plus separation);		
		3 oxygen bridge $/ - O -$, shown;	2 max	[3]
53.	(i)	add / use, Benedict's (reagent); heat; NOT use water bath alone (blue to) green / yellow / orange / brown / red (precipitate);	3	
	(ii)	hydrolysis; boil / heat, with (dilute), acid / HCl; A (dil) NaOH (add) hydrolytic enzyme / sucrase / invertase;	1 max	[4]
54.	(a) (b)	active site correctly labelled; C;	1	
	(0)	С,	1	
	(c)	<pre>shape of active site; complementary; correct shape / correct molecule / correct substrate / C, will, fit / form ESC; any other shape / any other molecule / any other substrate / A / B / D / E, will not; award 2 marks if candidate writes 'only correct')</pre>	3 max	

(d) *look for points relating to the <u>substrate</u> changing shape*

ignore refs to enzyme changing shape

puts strain on the bonds in the substrate / bonds break more easily; A weakens bonds lowers activation energy; AVP; e.g. referring to anabolic reaction 1 max [6] 55. enzymes (of microorganisms) work in low temperatures; enzymes used in stain removal / AW; can be used for cool washes; 2 max saves energy;

56. marking points 1, 4, 8, 14, 19, 20 and 22 relate to the bullet points in the question

- 1 liquid at normal temperatures;
- hydrogen bonding between water molecules; 2
- molecules more difficult to separate; 3
- 4 ice floats on water / water freezes from top down;
- 5 insulates water beneath;
- 6 large bodies of water don't freeze completely / animals can still swim etc.;
- 7 (change in density with temperature) causes currents to circulate nutrients;
- 8 solvent for, polar / ionic, substances;
- 9 solubility of gases in environment;
- 10 allows reactions to take place;
- transport medium; 11
- 12 e.g. (of substance carried in what);
- 13 transport medium for, gametes / blood cells;

[2]

14	water slow to change temperature;	
----	-----------------------------------	--

- 15 lakes / oceans / large volumes, provide thermally stable environment;
- 16 internal body temperature changes minimised;
- 17 used for cooling;
- **18** e.g. (sweating / panting / transpiration);
- 19 large amount of energy must be removed for water to freeze;
- 20 organisms can use surface of water (as habitat);
- e.g.; (of organism)
- 22 can form (long / unbroken) columns of water;
- 23 ref. to vascular tissue / xylem;
- 24 reactant (photosynthesis);
- 25 role in, hydrolysis / condensation;
- 26 AVP; e.g. transparency
- AVP; plants can photosynthesise under water incompressible hydrostatic skeleton / turgor buoyancy guard cell mechanism support for large organisms on ice (penguins / polar bears) further detail of any point
 9 max

QWC – legible text with accurate spelling, punctuation and grammar; 1

- [10]
- 57. deoxyribose in DNA; thymine in DNA; R thiamine DNA is, made of two chains / double helix; R double molecule longer; 2 max

58. (i) answer has to relate to <u>DNA</u> nucleotide

monomer unit;	
deoxyribose;	
nitrogenous base / named base(s); ecf for thiamine	
phosphate;	
AVP; e.g. deoxyribose is a pentose sugar / correct diagram	3 max

(ii) hydrogen bonds between bases; <u>complementary</u> (base pairs); purine to pyrimidine; A to T <u>and</u> C to G; 2 H bonds between A and T / 3 H bonds between C and G; DNA polymerase; 3 max

[6]

 60. (i) look for prokaryote feature no nucleus / no nuclear membrane / no nucleolus / DNA free (in cytoplasm): R DNA moving naked DNA / DNA not associated with proteins / no chromosomes; circular / loop, DNA; no, membrane-bound organelles / e.g.; smaller / I8nm / 70S, ribosomes; no ER; cell wall, not cellulose / polysaccharide and, amino acids / murein; AVP; e.g. mesosomes / plasmids (ii) glycosidic (link) and peptide (bonds) (in correct context); condensation; ref. OH group; ref. NH2 and OH group; water, removed / produced / by-product; enzyme; AVP; e.g. energy required 3 max (iii) iron / Fe; ignore pluses / minuses 1 (iv) treat enzyme as neutral nitrogenase; leghaemoglobin; haemoglobin; <li< th=""><th>59.</th><th>transc enzyr 3 base seque prima coilin detern foldir 3-D s</th><th>codes for, protein / polypeptide; cription <u>and</u> translation (or described); ne is <u>globular</u> (protein); es = 1 amino acid; nce of bases / triplets, determines, sequence of amino acids / rry structure; g / α helix / β-pleated sheet / particular secondary structure; mines projecting side groups; ng / bonding, for tertiary structure; tructure is tertiary structure; e.g. ref. active site related to shape 2 or more genes produce quaternary structure</th><th>4 max</th><th>[4]</th></li<>	59.	transc enzyr 3 base seque prima coilin detern foldir 3-D s	codes for, protein / polypeptide; cription <u>and</u> translation (or described); ne is <u>globular</u> (protein); es = 1 amino acid; nce of bases / triplets, determines, sequence of amino acids / rry structure; g / α helix / β-pleated sheet / particular secondary structure; mines projecting side groups; ng / bonding, for tertiary structure; tructure is tertiary structure; e.g. ref. active site related to shape 2 or more genes produce quaternary structure	4 max	[4]
 (in cytoplasm); R DNA moving naked DNA / DNA not associated with proteins / no chromosomes; circular / loop, DNA; no, membrane-bound organelles / e.g.; smaller / 18nm / 70S, ribosomes; no ER; cell wall, not cellulose / polysaccharide and, amino acids / murein; AVP; e.g. mesosomes / plasmids 1 max (ii) glycosidic (link) and peptide (bonds) (in correct context); condensation; ref. OH groups; ref. NH₂ and OH group; water, removed / produced / by-product; enzyme; AVP; e.g. energy required 3 max (iii) iron / Fe; <i>ignore pluses / minuses</i> (iv) <i>treat enzyme as neutral</i> nitrogenase; leghaemoglobin; haemoglobin; haemoglobin; (v) (nitrogen) fixation; A reduction (v) (nitrogen) fixation; A reduction (v) type of inhibition (competitive / non-competitive / reversible / irreversible); basic mode of action (e.g. binds to active site); detail; consequence (e.g. prevents, substrate / nitrogen, from binding); 2 max 	60.	(i)	look for prokaryote feature		
 condensation; ref. OH groups; ref. NH₂ and OH group; water, removed / produced / by-product; enzyme; AVP; e.g. energy required 3 max (iii) iron / Fe; ignore pluses / minuses 1 (iv) treat enzyme as neutral nitrogenase; leghaemoglobin; haemoglobin; haemoglobin; 2 max (v) (nitrogen) fixation; A reduction 1 (vi) type of inhibition (competitive / non-competitive / reversible / irreversible); basic mode of action (e.g. binds to active site); detail; consequence (e.g. prevents, substrate / nitrogen, from binding); 2 max 			(in cytoplasm); R DNA moving naked DNA / DNA not associated with proteins / no chromosomes; circular / loop, DNA; no, membrane-bound organelles / e.g.; smaller / 18nm / 70S, ribosomes; no ER; cell wall, not cellulose / polysaccharide and, amino acids / murein;	1 max	
 (iv) treat enzyme as neutral nitrogenase; leghaemoglobin; haemoglobin; (v) (nitrogen) fixation; A reduction (v) (nitrogen) fixation; A reduction (vi) type of inhibition (competitive / non-competitive / reversible / irreversible); basic mode of action (e.g. binds to active site); detail; consequence (e.g. prevents, substrate / nitrogen, from binding); 2 max 		(ii)	condensation; ref. OH groups; ref. NH ₂ and OH group; water, removed / produced / by-product; enzyme;	3 max	
 (iv) treat enzyme as neutral nitrogenase; leghaemoglobin; haemoglobin; (v) (nitrogen) fixation; A reduction (v) (nitrogen) fixation; A reduction (vi) type of inhibition (competitive / non-competitive / reversible / irreversible); basic mode of action (e.g. binds to active site); detail; consequence (e.g. prevents, substrate / nitrogen, from binding); 2 max 		(;;;)	iron / Fo: ignora plusas / minusas	1	
nitrogenase; leghaemoglobin; haemoglobin; 2 max (v) (nitrogen) fixation; A reduction 1 (vi) type of inhibition (competitive / non-competitive / reversible / irreversible); basic mode of action (e.g. binds to active site); detail; consequence (e.g. prevents, substrate / nitrogen, from binding); 2 max				1	
 (vi) type of inhibition (competitive / non-competitive / reversible / irreversible); basic mode of action (e.g. binds to active site); detail; consequence (e.g. prevents, substrate / nitrogen, from binding); 2 max 			nitrogenase; leghaemoglobin;	2 max	
basic mode of action (e.g. binds to active site); detail; consequence (e.g. prevents, substrate / nitrogen, from binding); 2 max		(v)	(nitrogen) fixation; A reduction	1	
consequence (e.g. prevents, substrate / nitrogen, from binding); 2 max		(vi)	basic mode of action (e.g. binds to active site);		
			consequence (e.g. prevents, substrate / nitrogen, from binding);	2 max	[10]

 61. active site;
 1

 [1]
 [1]

 St Paul's Catholic School
 30

62.	activ	ation ((energy);	1	[1]
63.	gene	/ allel	e; A cistron R genes / alleles / operon / intron	1	[1]
64.	(a)	(i)	add / mix with, alcohol / ethanol / propanone / (suitable) organic solvent; then, add to / add / mix with, water; water alone = 0 \mathbf{R} heat	2	
		(ii)	emulsion / milky colour / cloudy / AW; R precipitate	1	
	(b)	 (b) <i>phospholipids have</i> 1 less fatty acid (residue) / 2 fatty acid (residues) not 3; A hydrocarbon 1 less ester bond / 2 ester bonds not 3; phosphate; choline / base / nitrogen; hydrophilic / polar, end / head; 		max 3	
	(c)	(i)	add, copper sulphate (solution) and sodium hydroxide (solution) / biuret (reagent); R Biuret test unqualified R heat	1	
		(ii)	purple / mauve / lilac; R blue	1	[8]

65.	secon coilin poly $(\alpha -)$ $(\beta -)$ hydro betw (betw	ary ence / order, of amino acids (in a polypeptide); A R groups <i>ndary</i> ng / folding, of the, peptide / chain of amino acids / peptide chain / primary structure; <u>helix;</u> pleated sheet; ogen bonds; een amino acids in (same) chain; veen) –NH and –CO; ; e.g. random coiling	1 max 4	[max 5]
66.	(a)	 (malonate) same / similar, shape as, succinate / substrate; A idea that inhibitor is complementary to active site binds to / fits / blocks, <u>active site;</u> for a limited time / reversible / may leave / AW; R does not bind permanently prevents, formation of ESC / substrate from binding; AW no / less, product formed; A suitable ref. to conversion of succinate 	max 3	
	(b)	rate increased; greater chance of substrate binding with, active site / enzyme; ora more, product formed / substrate converted; will reach V _{max} / rate unaffected, if great excess of succinate; AVP; e.g. graph of rate against substrate concentration effect of time (using up substrate)	max 3	[6]
				[o]