1.

1 hydrogen bond represented as, horizontal / vertical, dashed line between \mathbf{O} on one molecule and \mathbf{H} on the adjacent molecule;

DO NOT CREDIT if >1 H bond is drawn between the same two molecules

2 hydrogen / H, bond label (on any drawn bond between 2 molecules);
3 (delta positive) δ^{+}on each drawn \mathbf{H}
and (delta negative) (2) δ^{-}on each drawn \mathbf{O};
if both molecules drawn, δ^{+}and δ^{-}on all atoms.
ACCEPT d (lower case) for δ
2. ice floats
$\mathbf{P 1}$ (ice less dense because) molecules spread out;
P2 molecules form, crystal structure / lattice / AW;
P3 ice forms insulating layer / clearly described; e.g. acts as a barrier to the cold

P4 water (below ice), does not freeze / still liquid / remains water / kept at higher temperature;

S1 organisms do not freeze;
DO NOT ACCEPT die (because ‘survival’ stated in stem)
S2 animals / organisms, can still, swim / move;
S3 allows, currents / nutrients, to circulate;
solubility
P5 ions / named ion, polar / charged;
P6 ions /named ion, attracted to / bind to / interact with, water;
S4 (named) organisms / plants / animals, uptake / AW, minerals / named mineral / nutrients; ACCEPT obtain / enters / goes in / gets

S5 correct use of named, mineral / nutrient, in organism;
needs to be more specific than 'for growth / metabolism' suitable examples include but are not limited to: nitrates for amino acids / protein / (named) nucleic acid / phosphate for ATP / phospholipids / plasma membrane / magnesium for chlorophyll etc

temperature stability

P7 many / stable, (hydrogen) bonds between molecules;
Many hydrogen bonds between molecules $=2$ marks (gets P7 and H)

P8 at lot of energy to, force apart molecules / break bonds;
ACCEPT heat as alternative to energy
P9 high (specific) heat capacity;
DO NOT CREDIT latent heat capacity

S6 temperature does not change much / small variation in temperature;
could refer to organisms or surrounding water
ACCEPT stays cool in summer / stays warm in winter
DO NOT CREDIT constant alone
S7 effect of temperature on, enzymes / metabolic rate;
ACCEPT any reference to temperature affecting enzyme activity / metabolic rate

S8 gases remain soluble;

Award once in any section
H hydrogen bonds;
DO NOT CREDIT if in incorrect context
(e.g. they are strong bonds)

7 max

QWC - Award if you see a P mark and an S mark within the same section;
Look for the S mark first, then award QWC if there is a P mark in the same section in the mark scheme
3. hydrolysis / hydrolytic; hydrophilic;

ACCEPT phonetic spelling throughout
IGNORE head
4. (i) X;
(ii) 1 substrate / PABA, and, inhibitor / sulfonamide, similar shape;

ACCEPT similar structure DO NOT CREDIT same
2 able to, bind / fit into / block, active site;
3 (shape) complimentary to active site;
DO NOT CREDIT refs to PABA and sulfonamide being complementary to each other or to the enzyme (alone)

4 both have, hex / benzene / 6-C, (ring);
5 both have, NH_{2} / amine;
6 correct ref to a difference between sulfonamide and PABA;
e.g. only sulfonamide contains S sulfonamide has 1 more NH_{2} group sulfonamide has SONH_{2} but PABA has N_{2} only PABA has COOH group
5. (i) without inhibitor

1 more, PABA / substrate, molecules enter active site:
ACCEPT more successful collisions between substrate and active site

2 more, enzyme substrate complexes / ESCs, formed;
3 at low concentration not all active sites occupied / at high concentration all active sites occupied;

ACCEPT active sites filled / no free active sites
DO NOT CREDIT active sites run out
4 achieves / reaches, max (turnover) rate / $\mathrm{V}_{\text {max }}$;
ACCEPT 'cannot work any quicker'
DO NOT CREDIT 'optimum rate' or 'rate levels off'
5 (at high substrate concentration) enzyme concentration limiting;
(ii) with inhibitor

1 inhibitor / sulfonamide, can, fit / block / bind to / compete for, active site;

2 (occupies it) for a short time / temporary / reversibly;
3 fewer active sites available (for substrate) / AW;
ACCEPT substrate can't access active site
4 (idea of) more substrate reduces chance of inhibitor getting in;
ACCEPT more ESC formed in context of overcoming inhibition / substrate can out-compete inhibitor
6. (a) (i) L;

M;
J;
If $2^{\text {nd }}$ letter given, no mark
(ii) CREDIT answers from clearly drawn diagrams with bonds labelled

1 peptide bond;
ACCEPT peptide link
2 between, amine / J group (of one amino acid) and carboxyl / L group (of another);

3 H (from amine group) combines with OH (from carboxyl group);

4 condensation reaction
OR water, lost / eliminated / produced / created / AW;
5 covalent;
(b) 1 some R groups, attract / repel;

2 disulfide, bridges / bond;
3 between, cysteine / SH / S (atoms);
4 hydrogen / H, bonds;
DO NOT CREDIT in context of secondary structure
5 ionic bonds between, oppositely charged / + and -, R groups;
6 hydrophilic R groups, on outside of molecule / in contact with water (molecules);

7 hydrophobic R groups, on inside of molecule / shielded from water (molecules);

4 max
7. (i)

AWARD 1 mark per correct row
Comparative statements must be made in a row

	glycogen	collagen
1	carbohydrate / polysaccharide	protein / polypeptide
2	(alpha) glucose (units)	amino acid (units)
3	identical units	different amino acid units
4	glycosidic, bonds / links	peptide, bonds / links
5	branched	unbranched / linear
6	non-helical	helical
7	one chain (per molecule)	three chains (per molecule)
8	no cross links	cross links (between chains)
9	contains C H O	contains C H O N

2 DO NOT CREDIT beta
5 ALLOW straight
7 DO NOT CREDIT strands
9 IGNORE S (for collagen)
(ii) (high tensile) strength / strong;

IGNORE fibrous / tough
does not stretch / is not elastic;
insoluble;
flexible;
Mark the $1^{\text {st }}$ answer on each numbered line
2 max
[5]
8. (i) deoxyribose (sugar);
phosphate (group);
DO NOT CREDIT dioxyribose
DO NOT CREDIT phosphate head or phosphate backbone
(nitrogenous / purine or pyrimidine) base / one correctly named base;
DO NOT CREDIT letter instead of named base DO NOT CREDIT uracil
DO NOT CREDIT incorrect spelling of thymine with ' a '
(ii) has ribose;
uracil / U, instead of, thymine / T;
DO NOT CREDIT incorrect spelling of thymine with ' a '
single stranded;
3 forms / AW;
assume answer refers to RNA unless otherwise stated
9. 1 untwist / unwind;

DO NOT CREDIT unravel
S 2 unzip / described;
DO NOT CREDIT strands separating without qualification
S 3 H bond breaks;
4 both strands act as template;
N 5 (aligning of) free (DNA) nucleotides;
DO NOT CREDIT bases
N 6 complementary, base / nucleotide, pairing;
N 7 C to G and T to $\mathrm{A} /$ purine to pyrimidine;
6 \& 7 Do not consider for QWC if mark awarded in the context of breaking apart or DNA structure only, rather than forming new double helix

R $\mathbf{8}$ hydrogen bonds reform;
R 9 sugar-phosphate back bone forms;
R 10 (using) covalent / phosphodiester, bond;
11 semi-conservative replication;
12 DNA polymerase;
CREDIT at any stage in the process
13 AVP;
e.g. ligase / helicase / gyrase used in correct context C - G 3 H bonds / T-A 2 H bonds activation of free nucleotides (with 2 phosphates) synthesis in the 5' to 3' direction Okazaki fragments on lagging strand

6 max

QWC - correct sequence - $1 \mathbf{S}$ mark, then $1 \mathbf{N}$ mark, then $1 \mathbf{R}$ mark;
It should be clear that candidate realises that the sequence is S , then N then R - even if not written in that order
DO NOT CREDIT if any ref to transcription / translation
10. (i) polypeptide / protein / primary structure / a sequence of amino acids;

DO NOT CREDIT 'codes for an amino acid'
IGNORE enzyme / named protein
(ii) different, sequence of amino acids / primary structure / AW; different protein / protein folds up differently / different tertiary structure; (product) no longer functions / different function;

DO NOT CREDIT 'product' or incorrect biochemical (e.g. carbohydrate)
ACCEPT suitable example, e.g. active site of enzyme no longer complimentary to substrate
11. double helix; anti-parallel; sugar-phosphate; hydrogen;
12. (i) percentages / amount, C \& G similar (in all organisms);
percentages / amount, A \& T similar (in all organisms);
different / named, organisms have different proportions of, bases / named base / AW;
greatest similarity between human and grasshopper;
least similarity between E coli and the other three;
E. coli has similar proportions of all bases /
E.coli has slightly more CG than AT /
(named) eukaryote has more AT than CG;
mp 1 \& 2 DO NOT CREDIT ref to a single organism
mp $1 \& 2$ IGNORE ref to complementary
DO NOT CREDIT statements in context of organism size
e.g. statement that human has more A than E. coli /
human has the most AT / E. coli has the most CG
This mark is for a general statement
comparative figs with units to support any statement;
e.g. human $C=19.8 \underline{\%}$ and $G=19.9 \underline{\%}$
human $A=30.9 \underline{\%}$ and E. coli $A=24.7 \underline{\%}$
'human has more A (30.9\%) than wheat (27.3\%)’ $=2$
(mp $3 \& 7$)
(ii) (suggests) A, bonds / pairs / links / connects / joins, to T; (suggests) C, bonds / pairs / links / connects / joins, to G; (suggests) purine bonds to pyrimidine; (evidence for) complementary base pairing / which bases pair with each other / base pairing rules;
suggests bases point 'inwards' rather than 'outwards';
IGNORE $A-T$ or $A=T$ unqualified
IGNORE $C-G$ or $C=G$ unqualified
ACCEPT 'bond' instead of 'pair'

$$
2 \text { max }
$$

13. Award 1 mark per correct row

feature	DNA	RNA
number of strands	two / double	one / single
bases		
present	thymine / T + adenine + cytosine + guanine)	uracil / U (+ adenine + cytosine + guanine)
sugar present	deoxyribose	ribose

If a choice of answers is given, do not credit unless both answers are valid (e.g. two and double strands for DNA / ribose and pentose sugar)
ACCEPT letters instead of names of bases
Names of bases must be unambiguous, so
DO NOT CREDIT adenosine / thiamine / cysteine / etc.
If more bases mentioned than T and U, then all bases must be included

DO NOT CREDIT dioxyribose / oxyribose/ hexose / sugar IGNORE pentose
14. carries / transfers, the (complementary DNA),
code / genetic information / copy of gene;
out of the nucleus;
(transfers it) to the, ribosome / RER / site of translation;
for, protein / polypeptide, synthesis;

> IGNORE transcription DO NOT CREDIT ref to the whole DNA code / molecule ACCEPT 'to make protein'
15. (a) (i) A hydrogen;

B glycosidic;
DO NOT CREDIT 'H bond’ as this is not a name
Correct spelling only.
IGNORE α or β or numbers
(ii) hydrolysis / addition of water;
(iii) $\underline{\beta}$ / beta, glucose;

Must be qualified as β or beta or B or b
(b) enzymes are specific; the, carbohydrate molecules / substrates, are different shapes;
active site and substrate are complementary; so that substrate will fit / formation of ESC; lock and key / induced fit;
(c) (i) pH much, higher / less acidic, than optimum (for enzyme 2);

Needs idea of much greater or too high DO NOT CREDIT just 'higher than' or 'above' DO NOT CREDIT too / more, alkaline
change in charge of active site; hydrogen / ionic, bonds break; tertiary structure / 3D shape / active site shape, altered; enzyme / tertiary structure, denatured;

DO NOT CREDIT peptide / disulphide, bonds break DO NOT CREDIT in context of heat / vibration
IGNORE ref to denaturing active site
IGNORE ref to denaturing active site DO NOT CREDIT kill / die
substrate no longer fits active site / ESC does not form;
'substrate doesn't bind to enzyme' is not quite enough
(ii) Mark $1^{\text {st }}$ response on each numbered line unless no answer on one line, then mark $1^{\text {st }} 2$ answers temperature; substrate concentration; enzyme concentration;

IGNORE ref to time
2 max
[12]
16. Marking points $\mathbf{2 - 6}$ can be applied to the standard solutions or the sample
1 using, standard / known, concentrations (of reducing sugar);
2 heat with, Benedicts (solution) / $\mathrm{CuSO}_{4}+\mathrm{NaOH}$;
3 (use of) same volumes of solutions (each time);
4 (use of) excess Benedicts;
5 changes to, green / yellow / orange / brown / (brick) red;
6 remove precipitate / obtain filtrate;
7 calibrate / zero, colorimeter;

8 using, a blank / water / unreacted Benedicts;
9 use (red) filter;
10 reading of, transmission / absorbance;
11 more transmission / less absorbance, of filtrate = more sugar present;
ora
12 (obtain) calibration curve;
13 plotting, transmission / absorbance, against (reducing) sugar concentration;

14 use reading of unknown sugar solution and read off graph to find conc.;
e.g. serial dilutions

ALLOW boil $/>80^{\circ} \mathrm{C} \quad$ DO NOT CREDIT warm
DO NOT CREDIT amount / quantity
CREDIT description of method
e.g. filtering / centrifuging \& decanting

ACCEPT 'measure how much light, does / does not, pass through'
If precipitate is clearly indicated as being present in sample, ALLOW 'less transmission / more absorbance, $=$ more sugar present'

[6]

17. breaking (glycosidic) bond;
glycosidic / correct bond drawn; addition of water / $\mathrm{H}_{2} \mathrm{O}$;

R if incorrect named bond treat 'covalent' $=$ neutral $\max 2$
18. accept $\checkmark=$ yes $\quad \boldsymbol{X}=$ no
each correct row $=$ I mark

	gum arabic	amylase	cellulose	glycogen
branched structure		no;		yes;
heteropolysaccharide		no;		no;
found in animals/plants		plants;		animals;
function in organism		storage / reserve; R'energy' alone	structural / strength /stops bursting / cell wall / support / gives cell shape; R protects rigid = neutral	

19. (i) crush (small amount of) seed pod;
add (small volume of) biuret, A / NaOH, and biuret, B / CuSO_{4};
positive = colour change from blue to, mauve/purple;
$\max 2$
(ii) preparation - allow 2 marks max:

1 crush, samples / leaves and seed pods, separately with water;
2 use same mass of each / AW and use same volume of water;
3 filter;
method - allow 4 marks max:
4 add benedict's reagent to filtrate; $\quad \mathbf{A ~ C u S O} 44$ in alkaline solution
5 excess reagent used / stated volume;
6 same volume added;
7 heat in a water bath/ at near boiling;
8 for stated time (up to 5 min);
analysis - allow 2 marks max:
either
9 colour change from blue to green / yellow / orange / red;
10 shows increasing concentration of reducing sugar;
or
11 use of centrifuge to remove precipitate;
12 use of colorimeter to compare intensity of blue colour in liquid portion;
13 red filter used in colorimeter;
(iii) humans eat only the seeds so do not gain, nutrition / energy, from, leaves / pods;
seeds maybe deficient in (some) essential amino acids;
cattle better at digesting, plant matter / seeds / leaves / pods, than humans / AW;
meat (from cattle) provides more essential amino acids for humans (than plant material)/AW;
cattle also produce milk;
AVP; e.g. cattle naturally roam to find food / intensive labour needed for human collection of plant material; $\max 3$
20. (i) deoxyribose sugar;
a nitrogenous/ nitrogen containing, base / named base; ecf for thiamine phosphate group;
AVP; e.g. deoxyribose is a pentose sugar/correct diagram of same accept A, T, G and C in place of names.
$\max 3$
(ii) hydrogen bonds between bases;
complementary base pairing;
purine to pyrimidine;
A to T and G to C ;
AVP; further detail e.g. 2 H bonds between A and $\mathrm{T} / 3 \mathrm{H}$ bonds between C and G DNA polymerase $\max 4$
21. ribose (instead of deoxyribose);
uracil / U, replaces thymine;
single stranded (instead of double stranded);
smaller molecule / different 3-D structure to DNA;
22. (a) award two marks if correct answer (12) is given
$6 / 30$ / 6/0.5 $\times 60$;
12;
(b) assume candidates are referring to the initial rate unless otherwise stated. concentration of, substrate / $\mathrm{H}_{2} \mathrm{O}_{2}$, molecules, high / higher at start; more chance of, substrate/ $\mathrm{H}_{2} \mathrm{O}_{2}$, molecules entering active site; all / most, active sites occupied;
23. at optimum temp - max 3 marks
molecules in culture have kinetic energy;
(frequent) collisions between enzyme and substrate molecules;
more enzyme-substrate complexes formed;
max rate of reaction / protein production achieved;
at higher temp - max 5 marks
(at higher temperature) molecules have more kinetic energy /
collisions occur more frequently and with more energy;
molecules vibrate and, bonds/ hydrogen bonds, broken;
tertiary structure / 3D shape, of enzymes altered;
active site loses, precise / complementary, shape;
enzymes are denatured;
substate molecule no longer fits active site;
(may be) irreversible so reaction/ protein production stops; A fungus destroyed
24. (a) (i) Mark the first 2 types of biological molecule stated. Absence $=$ neutral protein; A casein/polypeptide \mathbf{R} amino acid reducing sugar(s); A correctly named reducing sugar(s) [but only lactose/galactose/glucose]
(ii) Mark the first 3 types of biological molecule stated. Absence $=$ neutral
protein; A casein/polypeptide \mathbf{R} amino acid reducing sugar(s); A correctly named reducing sugar(s) [but only lactose/galactose/glucose/fructose] non-reducing sugar; A sucrose
(b) Assume 'it' = 'Health-Milk'
'Health - Milk' has
less reducing sugar(s); A correctly named reducing sugar(s)
[but only lactose/galactose/glucose/fructose]
less non-reducing sugar; A sucrose
"less sugar" = 1
credit converse statements relating to 'Energy - Boost'.
(c) states 'no added sugar'/implies low sugar; contains more sugar than (fresh) milk/high in sugar; more reducing sugar (than milk); \mathbf{R} 'none in fresh milk' has non-reducing sugar (compared to none in milk); fruit (extract) must contain (hidden) sugar;
(d) milk/drinks, already, milky/cloudy/white/opaque/‘not see through'/emulsion;
A 'positive result would not show up' \mathbf{R} precipitate 1
25. (i) \mathbf{R} statements linked to amylose/starch
max 3 if stated that glycogen is amylopectin
polymer/polysaccharide/described;
(made of) $\underline{\alpha}$-glucose;
joined by 1,4 links;
glycosidic;
(chain is) branched;
1,6 links where branches attach;
AVP; e.g. compact
detail of glycosidic bond 4 max
(ii) condensation; A polymerisation 1
[5]
26. (i) $37^{\circ} \mathrm{C}$; A any figure in the range $35-40$
(ii) (enzyme) increases in kinetic energy; A 'too much kinetic energy' enzyme vibrates too much;
breaks bonds;
named eg;
changes, tertiary/3-D, structure/shape, of enzyme;
active site changes, shape/AW;
substrate will not fit/no enzyme-substrate complex formed;
enzyme denatured;
will, decrease rate/stop reaction; 4 max
27. 1 mark per correct row

Look for both ticks and crosses.
If a table consists of ticks ONLY or crosses ONLY, then assume that the blank spaces are the other symbol.

If a table consists of ticks, crosses and blanks then the blanks represent no attempt at the answer.
Nucleotides line up along an exposed DNA strand.
The whole of the double helix 'unzips'.
Uracil pairs with adenine.
A tRNA triplet pairs with an exposed codon.
Both DNA polynucleotide chains act as templates.
Adjacent nucleotides bond, forming a sugar-phosphate backbone.
The original DNA molecule is unchanged after the process.
Adenine pairs with thymine.

28. hydrolysis (of Hb);
by enzymes;
proteases;
breaks peptide bonds;
removal of haem group;
reference to, diffusion/active transport/pinocytosis/channel proteins; AVP;
29. one mark for each correct row
if only ticks, assume that spaces are crosses; if only crosses, assume that spaces are ticks
R hybrid ticks

	statement						
substance	use heat	use biuret reagent	use Benedict's reagent	boil with a dilute acid	positive result is a blue-bla ck colour	result is an emulsion	
lipid	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\checkmark	
protein	\mathbf{x}	$\mathbf{\checkmark}$	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x};	
starch	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	$\mathbf{\checkmark}$	\mathbf{x};	
reducing sugar	\checkmark	\mathbf{x}	\checkmark	\mathbf{x}	\mathbf{x}	$\mathbf{x} ;$	
non- reducing sugar	\checkmark	\mathbf{x}	\checkmark	\mathbf{x}	\mathbf{x}	$\mathbf{x} ;$	

30. (i) glycosidic; A covalent / C-O-C / oxygen bridge R oxygen bond / 'glucosidic'
(ii) hydrolysis / hydrolytic; if qualified, needs to be correct 1
31. 1 no (suitable) enzyme (in gut) to digest sucralose / sucrase will not act on sucralose / AW;

2 enzymes, are specific / only act on one substrate;
3 complementary shape;
4 idea that $(\mathrm{C} /$ on sucralose instead of OH$)$ gives different, shape / structure;
5 no ESC (enzyme substrate complex) / substrate will not fit into active site;

6 AVP; e.g. further detail of enzyme-substrate interaction
32. 1 hydrogen bonding;

2 detail; e.g. (electro)negative oxygen atom can hydrogen bond to (electro)positive H atom/ one water molecule hydrogen bonds with up to 4 others / H bonds individually weak / large collective effect of many hydrogen bonds

coral algae

3 (high) thermal stability / temperature remains fairly constant;
4 water has high specific heat capacity;
5 much energy needed to break hydrogen bonds;

```
polar bears
cooling allows maximum number of hydrogen bonds to form;
water molecules space out to allow this;
water expands as it freezes / ice is less dense than water;
mussels, filter-feeders and sessile animals
9 water is transport medium for, food particles / gametes;
10 (tentacles / appendages / cilia) create currents bringing food;
11 ref. tides / ocean currents;
12 medium for, male gametes to swim / external fertilisation;
1 3 \text { no desiccation of gametes;}
ref to low viscosity / AW;
corals
15 minerals / ions, are soluble in water;
16 water is polar / detail of electrostatic attraction; A AW
seaweeds, fish eyes
1 7 \text { water is transparent to light;}
18 photosynthesis possible (in shallow water);
19 wavelength of light varies with depth;
whales, jellyfish
20 cohesion / water molecules stick to each other;
21 water not easily compressed;
22 gives support to large bodies / detail of upthrust or relative density;
23 acts as hydrostatic skeleton;
24 AVP; e.g. zonation / pigments
25 AVP; e.g. solubility of named gas linked to use in named organism 7 max
```

QWC - legible text with accurate spelling, punctuation and grammar 1
33. (i) not enough points plotted / experiment not carried out at enough (different) pH values; only 1 point between $3+4.3$ / no points between $3.25+4.3$; don't know / uncertainty of, rate between those points / where peak should be / where optimum is;
3.25 reading might be anomalous;
cannot draw, curve / line of best fit;
rises to, 3 / 3.25, and falls after 4.3;
2 max
(ii) note ~ enzyme is completely inactive at pH 7
loss of tertiary structure / loss of 3D structure / (enzyme) denatured;
(change in $\mathrm{pH} /\left[\mathrm{H}^{+}\right]$) alters charge distribution on (enzyme) molecule; hydrogen / ionic, bonds affected;
changes (shape of) active site;
enzyme substrate complex cannot be formed /
substrate not attracted to active site /
substrate cannot bind to active site / AW; 2 max
34. mark each section (E, S and C) to max shown

E enzyme concentration ~
1 reaction (rate) increases with increased enzyme; A high / low
2 more active sites available;
3 in excess substrate / as long as enough substrate (molecules available to occupy active site);

4 (as reaction progresses) the rate will decrease as substrate,
used up / becomes limiting; \mathbf{R} plateau

E
(3 max)

S substrate concentration ~
1 reaction (rate) increases with increased substrate; A high / low
2 more, molecules available to enter active site / ESC formed; A more successful collisions
3 reaches point where all active sites occupied;
4 no further increase in rate / reaches $\mathrm{V}_{\text {max }}$; A plateau / levels off
5 enzyme conc. becomes limiting / unless add more enzyme;

C competitive inhibitor ~
1 inhibitor has similar shape to substrate;
2 can, fit / occupy, active site;
3 for short time / temporary / reversible;
4 prevents / blocks, substrate from entering active site;
5 rate determined by relative concentrations;
6 little inhibition / rate little reduced, if substrate conc. > inhibitor conc.; ora
7 ref to chance of, substrate / inhibitor, entering active site;
8 effects can be reversed by increasing substrate conc.; C
general points ~
10 drawing a suitable graph to illustrate point made with labelled axes;
11 ref to optimum (rate); 9 max
QWC ~ legible text with accurate punctuation, spelling and grammar 1
35. (a) protein / polypeptide, with, carbohydrate (chain) / polysaccharide / sugar / glucose;
(R) glycogen
1
(b) (i) (α) helix; \mathbf{R} double helix 1
(ii) (β) pleat(ed) (sheet); 1
(c) tertiary $/ 3^{\circ}$; 1
36. solvent;
liquid; A same
dense;
insulates; A keeps warm \mathbf{R} protects / warms
hydrogen; A H/weak $\quad \mathbf{R ~ H}^{+} / \mathrm{H}_{2}$
surface tension / cohesion; 6
37. cholesterol not soluble (in water) ;
lipids / cholesterol, hydrophobic / non-polar ;
glucose is (very) soluble (in water) ;
glucose is, hydrophilic / polar ;
2 max
38. A correct formulae
\mathbf{R} choice (if contradictory)

type of molecule tested	reagents used	positive result	negative result
protein	biuret / copper sulphate and sodium (or potassium) hydroxide;	purple / mauve / lilac;	blue solution
fat / lipid / oil / triglyceride; A phospholipid	alcohol and water	white emulsion	clear liquid
starch	iodine (in potassium iodide solution);	blue-black / black;	yellow solution

39. (i) \mathbf{R} references to fruit juice
use same volume of glucose solution;
use same volume of Benedict's solution; use same concentration of Benedict's solution; A strength / same batch boil for the same length of time;

A heat calibrate colorimeter / AW;

A same, filter / colorimeter 2 max
(ii) 6.5;

1
(iii) hydrolyse, filtrate / juice / bond / non-reducing sugar; either
with acid, neutralise / add alkali
or
treat with, sucrase / invertase;
either, if started with filtrate ...
boil with Benedict's + test filtrate / repeat original procedure; A heat
or, if started with juice ...
boil with Benedict's + test filtrate / repeat original procedure, to measure difference in absorbance with original; 2 max
40. (i) haemoglobin / haem; $\mathbf{R ~ H b} 1$
(ii) iron $/ \mathrm{Fe}^{2+} / \mathrm{Fe}^{3+} ; \quad \mathbf{R}$ ion $/ \mathrm{Fe} / \mathrm{Fe}^{+} \quad 1$
41. (i) breaking a bond with the addition of water; A named bond
(ii) fatty (acids produced);
[$\mathrm{H}+$] increased / more acidic / products are acidic / acids produced;
'fatty acids produced' = 2 marks
(iii) do not credit, substrate used up / lack of enzyme / end product inhibition pH , too low / not optimum; A too acidic enzyme denatured; equilibrium reached; further detail; 2 max
42. reduces rate; \mathbf{A} stops $\quad \mathbf{R}$ inhibits
fits into, allosteric site / site other than active site;
A 'fits into active site permanently'
alters, shape / charge, of active site;
so substrate cannot, fit to active site / bind to active site / form ESC;
will not reach $\mathrm{V}_{\text {max }}$;
increasing substrate concentration has no effect (on the rate); 3 max
43. (a) \mathbf{R} first reference to ${ }^{15} \mathrm{~N}$ being radioactive semi-conservative replication would give
1 one, template / original / old / parent, strand and one, new / daughter, strand;
2 complementary base pairing / joining of new nucleotides / other detail of forming the new strand;
data shows that
3 two isotopes in molecule / molecule contains both ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$;
4 one strand with, 'heavy' $\mathrm{N} /{ }^{15} \mathrm{~N}$; $\quad \mathbf{R}$ molecule
5 one strand with, 'light' $\mathrm{N} /{ }^{14} \mathrm{~N}$; $\quad \mathbf{R}$ molecule
6 no molecules with only, 1 isotope $/{ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$;
some points, particularly 4 and 5, could be awarded for a correctly labelled or keyed diagram

4 max
(b) correct answer only - do not accept from a selection

A;
C;
C and E ;
(c) 1 band =0

3 bands $=0$
band drawn for ${ }^{14} \mathrm{~N}$ and ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$ only;
thick for ${ }^{14} \mathrm{~N}$ and thin for ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$;
44. after a low carbohydrate diet athlete can exercise for, not long /
(no more than) one hour; AW ora
statement of trend observed; e.g. as carbohydrate in diet increases duration of exercise increases / carbohydrate loading improves performance; AW ora use of figures as a comparison; (look for 60, 125-130, and 185-190)
A two / three, times duration statements
45. penalise sugar once in the answer
glycogen is, source / store, of, energy / carbohydrate;
glycogen converted to glucose / glycogenolysis / glucogenesis;
glucose used in respiration;
to supply, energy / ATP, for muscle contraction;
more glycogen stored will last longer;
AVP; e.g. using muscle glycogen may be more efficient than
transporting glucose from liver
2 max
46. (i) polypeptide; A oligopeptide 1
(ii) glycine; A proline / alanine 1
(iii) in this answer assume that chain = polypeptide molecule $=$ groups of 3 polypeptide chains

A ecf for named amino acid from (ii) but NOT a name of a base amino acids / glycine, small (to allow close packing);
the small one is, every $3^{\text {rd }}$ amino acid / at every level in the molecule;
chains, form a tight coil / lie close to each other;
held together by hydrogen bonds; ignore other bonds
bonds form between R groups of lysines;
molecules form, fibres / bonds with adjacent molecules; A fibril covalent bond between, adjacent molecules / CO-NH groups; fibres composed of parallel molecules;
ends of parallel molecules staggered;
prevents line of weakness; 2 max
47. cell wall(s);
β / beta; A B
glycosidic; NOT glucosidic
180;
straight; A polysaccharide / unbranched / linear
hydrogen / H; NOT H_{2}
48. (i) 4
(ii) deoxyribose; NOT ribose phosphate;
nitrogen(ous) / organic / named, base; A purine / pyrimidine
NOT uracil
NOT letter
NOT thiamine / thyamine
take a correct base from a list unless that list includes uracil
49. $1 \quad$ 2, molecules / helices, (of DNA) produced;

2 identical (molecules of DNA produced);
3 (each made up of) 1, original / parent / old, strand;
41 new strand;
5 original / parent / old, strands, act as template / described;
6 ref to (free DNA) nucleotides; 3 max
50. (a) idea that arachidonate is substrate;
phospholipid source in membrane;
prostaglandin / product, can be, transported / stored;
(S)ER for, lipid / steroid, synthesis / transport;

AVP;
AVP; e.g. separate from other reactions cytoplasm environment not suitable for, reaction / enzyme ora idea that prostaglandin isolated COX does not, damage / use phospholipids from, other membranes
(b) ibuprofen
competitive;
ibuprofen blocks / arachidonate cannot enter, channel; A substrate
cannot reach active site;
aspirin
non-competitive;
changes shape (of) / blocks;
active site;
AVP; e.g. allosteric
no ESC formed / AW; allow once only 4 max
(c) A reverse argument as long as question is answered in terms
of low temperature
slows, reaction / rate / activity of enzyme / AW;
ref kinetic energy;
molecules moving, slowly / less;
few collisions / collisions less likely;
few ESC formed / ESC less likely to be formed;
reversible / enzyme not denatured / enzyme still works;
ref activation energy;
ref $\mathrm{Q}_{10}=2$;
4 max
51. similar ~allow valid similarities such as
same number, carbon / oxygen / hydrogen (atoms) / OH (groups); A hexose same formula; \mathbf{R} similar / molecule
ring / ring with O (atom) in it;
correct ref $\mathrm{CH}_{2} \mathrm{OH}$;
contain C, H and O ;
different ~ assume candidate is writing about fructose unless told otherwise allow valid differences such as
(fructose has) 5-membered ring / glucose has 6-membered ring; \mathbf{R} pentose
(4 C in ring v. 5C in ring / furanose v. pyranose in glucose)
(in fructose) $2 \mathrm{CH}_{2} \mathrm{OH}$ side chains / $1 \mathrm{CH}_{2} \mathrm{OH}$ side chain in glucose;
different angles between C atoms;
ref alignment of H and OH groups (on carbon 3 / carbon 4);
(in fructose) carbon 1 not in ring / carbon 1 in ring in glucose;
1 max
52. (i) glycosidic; NOT glucosidic
(ii) 1 carbon positions 1 and 2 on glucose and fructose;

2 formation of, water / $\mathrm{H}_{2} \mathrm{O}$, from 2 OH groups (plus separation);
3 oxygen bridge / - $\mathrm{O}-$, shown; 2 max
[3]
53. (i) add / use, Benedict's (reagent);
heat; NOT use water bath alone
(blue to) green / yellow / orange / brown / red (precipitate);
(ii) hydrolysis;
boil / heat, with (dilute), acid / HCl ; \mathbf{A} (dil) NaOH
(add) hydrolytic enzyme / sucrase / invertase; 1 max
54. (a) active site correctly labelled; 1
(b) C; 1
(c) shape of active site;
complementary;
correct shape / correct molecule / correct substrate / C, will, fit / form ESC;
any other shape / any other molecule / any other substrate /
A / B / D / E, will not;
award 2 marks if candidate writes 'only correct') 3 max
(d) look for points relating to the substrate changing shape
ignore refs to enzyme changing shape
puts strain on the bonds in the substrate / bonds break more easily;
A weakens bonds
lowers activation energy;
AVP; e.g. referring to anabolic reaction 1 max
55. enzymes (of microorganisms) work in low temperatures;
enzymes used in stain removal / AW;
can be used for cool washes;
saves energy; 2 max
56. marking points $1,4,8,14,19,20$ and 22 relate to the bullet points in the question

1 liquid at normal temperatures;
2 hydrogen bonding between water molecules;
3 molecules more difficult to separate;
4 ice floats on water / water freezes from top down;
5 insulates water beneath;
6 large bodies of water don't freeze completely / animals can still swim etc.;
7 (change in density with temperature) causes currents to circulate nutrients;
8 solvent for, polar / ionic, substances;
9 solubility of gases in environment;
10 allows reactions to take place;
11 transport medium;
12 e.g. (of substance carried in what);
13 transport medium for, gametes / blood cells;

14 water slow to change temperature;
15 lakes / oceans / large volumes, provide thermally stable environment;
16 internal body temperature changes minimised;
17 used for cooling;
18 e.g. (sweating / panting / transpiration);
19 large amount of energy must be removed for water to freeze;
20 organisms can use surface of water (as habitat);
21 e.g.; (of organism)
22 can form (long / unbroken) columns of water;
23 ref. to vascular tissue / xylem;
24 reactant (photosynthesis);
25 role in, hydrolysis / condensation;
26 AVP; e.g. transparency
27 AVP; plants can photosynthesise under water incompressible hydrostatic skeleton / turgor buoyancy guard cell mechanism support for large organisms on ice (penguins / polar bears) further detail of any point

QWC - legible text with accurate spelling, punctuation and grammar; 1
57. deoxyribose in DNA;
thymine in DNA; \mathbf{R} thiamine
DNA is, made of two chains / double helix; \mathbf{R} double molecule
longer; 2 max
58. (i) answer has to relate to DNA nucleotide
monomer unit;
deoxyribose;
nitrogenous base / named base(s); ecf for thiamine phosphate;
AVP; e.g. deoxyribose is a pentose sugar / correct diagram
3 max
(ii) hydrogen bonds between bases;
complementary (base pairs);
purine to pyrimidine;
A to T and C to G ;
2 H bonds between A and T / 3 H bonds between C and G;
DNA polymerase;
3 max

```
59. DNA codes for, protein / polypeptide;
    transcription and translation (or described);
    enzyme is globular (protein);
    3 bases \equiv1 amino acid;
    sequence of bases / triplets, determines, sequence of amino acids /
    primary structure;
    coiling / \alpha helix / }\beta\mathrm{ -pleated sheet / particular secondary structure;
    determines projecting side groups;
    folding / bonding, for tertiary structure;
    3-D structure is tertiary structure;
    AVP; e.g. ref. active site related to shape
                        2 or more genes produce quaternary structure 4 max
```

60. (i) look for prokaryote feature
no nucleus / no nuclear membrane / no nucleolus / DNA free (in cytoplasm); R DNA moving naked DNA / DNA not associated with proteins / no chromosomes; circular / loop, DNA; no, membrane-bound organelles / e.g.;
smaller / 18nm / 70S, ribosomes;
no ER;
cell wall, not cellulose / polysaccharide and, amino acids / murein;
AVP; e.g. mesosomes / plasmids
1 max
(ii) glycosidic (link) and peptide (bonds) (in correct context);
condensation;
ref. OH groups;
ref. NH_{2} and OH group;
water, removed / produced / by-product;
enzyme;
AVP; e.g. energy required
3 max
(iii) iron / Fe; ignore pluses / minuses
(iv) treat enzyme as neutral
nitrogenase;
leghaemoglobin;
haemoglobin;
2 max
(v) (nitrogen) fixation; A reduction

1
(vi) type of inhibition (competitive / non-competitive / reversible / irreversible); basic mode of action (e.g. binds to active site); detail;
consequence (e.g. prevents, substrate / nitrogen, from binding); 2 max
61. active site; 1
62. activation (energy); 1
63. gene / allele; \mathbf{A} cistron \mathbf{R} genes / alleles / operon / intron 1
64. (a) (i) add / mix with, alcohol / ethanol / propanone / (suitable) organic solvent; then, add to / add / mix with, water; water alone $=0$
\mathbf{R} heat2
(ii) emulsion / milky colour / cloudy / AW; R precipitate 1
(b) phospholipids have
1 less fatty acid (residue) / 2 fatty acid (residues) not 3; A hydrocarbon1 less ester bond / 2 ester bonds not 3;phosphate;choline / base / nitrogen;hydrophilic / polar, end / head;$\max 3$
(c) (i) add, copper sulphate (solution) and sodium hydroxide (solution) / biuret (reagent);
R Biuret test unqualified \mathbf{R} heat1
(ii) purple / mauve / lilac; \mathbf{R} blue 1
65. primary
sequence / order, of amino acids (in a polypeptide); A R groups
secondary
coiling / folding, of the,
polypeptide / chain of amino acids / peptide chain / primary structure;
$(\alpha-)$ helix;
(β-) pleated sheet;
hydrogen bonds;
between amino acids in (same) chain;
(between) - NH and -CO;
AVP; e.g. random coiling $\max 4$
66. (a) (malonate) same / similar, shape as, succinate / substrate;

A idea that inhibitor is complementary to active site
binds to / fits / blocks, active site; for a limited time / reversible / may leave / AW; \mathbf{R} does not bind permanently prevents, formation of ESC / substrate from binding; AW no / less, product formed; A suitable ref. to conversion of succinate
$\max 3$
(b) rate increased;
greater chance of substrate binding with, active site / enzyme; ora more, product formed / substrate converted;
will reach $\mathrm{V}_{\text {max }}$ / rate unaffected, if great excess of succinate;
AVP; e.g. graph of rate against substrate concentration effect of time (using up substrate)
$\max 3$

