| Candidate | Centre | Candidate | | |-----------|--------|-----------|--| | Name | Number | Number | | | | | 0 | | # **GCSE** 237/02 ## SCIENCE HIGHER TIER PHYSICS 1 P.M. FRIDAY, 18 June 2010 45 minutes | For Examiner's use only | | | |-------------------------|-----------------|-----------------| | Question | Maximum
Mark | Mark
awarded | | 1. | 5 | | | 2. | 7 | | | 3. | 5 | | | 4. | 6 | | | 5. | 8 | | | 6. | 12 | | | 7. | 7 | | | Total | 50 | | #### ADDITIONAL MATERIALS In addition to this paper you may require a calculator. #### INSTRUCTIONS TO CANDIDATES Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions. Write your answers in the spaces provided in this booklet. #### INFORMATION FOR CANDIDATES The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers. A list of equations is printed on page 2. In calculations you should show all your working. ## **EQUATIONS** power = $voltage \times current$ energy transfer = power \times time units used (kWh) = power (kW) \times time (h) cost = units used $(kWh) \times cost per unit$ % efficiency = $\frac{\text{useful energy transfer}}{\text{total energy input}} \times 100$ speed = $\frac{\text{distance}}{\text{time}}$ wave speed = wavelength \times frequency wavelength $= \frac{\text{wave speed}}{\text{frequency}}$ # Examiner only ## Answer all questions. | 1. | (a) | Elec | tromagnetic waves are used in communication to send television (TV) signals. | |----|-----|-------|---| | | | (i) | Name the part of the spectrum that carries TV signals via satellites. [1] | | | | (ii) | Name the part of the spectrum that carries TV signals from transmitters to an aerial. [1] | | | | (iii) | Name the part of the spectrum that carries TV signals through optical fibre cables. [1] | | | (b) | | ouseholder installs a dish to receive TV signals from a communication satellite. lain why the householder will not need to move the dish once it is set up. [2] | | | | | | | | | | | 03 0237 02 - 2. The Solar System consists of the Sun and its planets. - (a) (i) Apart from the Earth, name **one** planet that has a rocky structure. [1] - (ii) Name the innermost planet that has a gas structure. [1] - (b) The table shows data about some of the planets. | Planet | Distance from Sun (million km) | Time to orbit the Sun (days) | Length of a day (hours) | |---------|--------------------------------|------------------------------|-------------------------| | Mercury | 60 | 90 | 1420 | | Venus | 110 | 220 | 5930 | | Earth | 150 | 365 | 24 | | Mars | 230 | 690 | 24.5 | | Jupiter | 780 | 4380 | | (i) Use the grid to plot a graph to show how the time a planet takes to orbit the Sun depends on the distance from the Sun for the first four planets only. [3] | (11) | Explain how the graph shows that the time for the orbit is not proportional to distance from the Sun. | 1ts
[1] | |-------|---|------------| | (iii) | Is there enough information in the table to estimate the length of a day Jupiter? | on | | | Give a reason for your answer. | [1] | | | | | 7 7 0.5 **3.** (a) Water can be boiled using a saucepan on a gas cooker ring. The energy transfers are shown below. Write down an equation as it appears on page 2 and use it to find the efficiency of heating water in this way. | Equation: | | |--------------|-----| | 1 | | | | [1] | | | [-] | | Calculation: | [2] | (b) An electric kettle is 90% efficient at boiling water. Complete the energy transfer diagram below. The diagram is not to scale. [2] Space for working: 5 **4.** The diagram shows water waves arriving on a beach. | (a) | Use the diagram to describe how the wavelength and amplitude of the waves | change as | |-----|---|-----------| | | the water gets shallower. | [2] | (b) (i) The frequency of the water waves is 0.2 Hz. Explain what this means. [1] (ii) Write down an equation as it appears on page 2 and use it to find the wavelength of the water waves when their speed is 0.6 m/s. Equation: [1] Calculation: [2] Wavelength = m | 5. | (a) | Discuss the factors that are involved in making decisions about the type of commerce power station that could be built in an area. | cial
[3] | |----|------------|--|-------------| <i>(b)</i> | Read the passage below about a domestic wind-powered generator. | | | | | One type of domestic wind turbine supplies up to 6 kW. | | | | | A householder installs a wind turbine. When it is operating, it delivers a mean power of 2.5 kW. This saves, on average, £384 per year on electricity bills. | | | | | Adapted from http://www.energysavingtrust.org.uk/Generate-your-own-energy/Wind-turbines | | | | | (i) Give a reason why the power supplied by the wind turbines varies. | [1] | | | | (ii) Use the equations | | | | | Units used = power $(kW) \times time(h)$ | | | | | $Cost = units used \times cost per unit$ | | | | | to calculate the time the turbine provided electricity to the house to save £384 i year. (One unit of electricity costs 12p) | n a
[4] | | | | | | | | | | | | | | Time = | h | Furn over | 6. | (a) | (i) | Explain why step-up transformers reduce energy losses in the National Grid system. [2] | |----|-----|------|--| | | | | | | | | (ii) | The power output of a step-up transformer is 1.9×10^4 kW. The output voltage of the transformer is 3.8×10^5 V. | | | | | Use the equation | | | | | Power = voltage \times current | | | | | to calculate the output current of the transformer. [3] | | | | | Current = A | | | (b) | (i) | The picture of one type of transformer shows the steel fins which are used as part of the cooling system. | | | | | Black steel fins Explain how the steel fins shown in the picture cool the transformer effectively. | | | | | [3] | 12 | (ii) | The power input to a transformer is 2.0×10^4 kW. The power output of the transformer is 1.9×10^4 kW. | | |------|--|--| | | Write down an equation as it appears on page 2 and use it to find the energy loss every minute in the transformer. | | | | Equation: | | | | [1] | | | | Calculation: [3] | | | | | | | | | | | | | | | | | | Energy loss = J **QUESTION 7 IS ON PAGE 12** Turn over. | (a) | In the 19 th century, it was discovered that the Earth was millions of years old. Why di this cause difficulties for the existing theory about the source of the Sun's energy? [2] | | | |-----|---|--|--| | (b) | Processes in stars cause the chemical composition of the universe to change. State how and explain why the chemical composition of the universe changes over time. [3] | | | | | | | | | (c) | Explain how the study of spectra from distant galaxies has led to a model of an expanding universe. [2] | | | | | | | |