(3)

(4)

(4)

(5)

(3)

1 Given that

$$\frac{22}{(2x-3)(x+4)} \equiv \frac{A}{2x-3} + \frac{B}{x+4},$$

find the values of the constants A and B.

2 Find the values of A, B and C such that

$$\frac{x+5}{(x+1)(x-3)^2} \equiv \frac{A}{x+1} + \frac{B}{x-3} + \frac{C}{(x-3)^2}.$$
 (4)

3 Given that

$$\frac{4x^2 - 16x - 7}{2x^2 - 9x + 4} \equiv A + \frac{B}{2x - 1} + \frac{C}{x - 4},$$

find the values of the constants A, B and C.

4 $f(x) = 3x^3 + 11x^2 + 8x - 4.$

a Fully factorise
$$f(x)$$
. (4)

b Express
$$\frac{x+16}{f(x)}$$
 in partial fractions. (4)

5 Given that

$$f(x) = \frac{1}{x(2x-1)^2},$$

express f(x) in partial fractions.

6 $f(x) = \frac{x^3 + 5x^2 - 2x - 19}{x^2 + 7x + 10}.$

Show that f(x) can be written in the form

$$f(x) = x + A + \frac{B}{x+2} + \frac{C}{x+5}$$

where A, B and C are integers to be found.

7 The function f is defined by

$$f(x) = \frac{4}{x^2 - 1}.$$

a Express f(x) in partial fractions.

The function g is defined by

$$g(x) = \frac{2+5x-x^2}{(x-4)(x-2)(x-1)}.$$

b Express g(x) in partial fractions.

(3)

c Hence, or otherwise, solve the equation f(x) = g(x).

(5)

Worksheet C

(4)

- 1 a Expand $(1 4x)^{\frac{1}{2}}$ in ascending powers of x up to and including the term in x^3 and state the set of values of x for which the expansion is valid. (4)
 - **b** By substituting x = 0.01 in your expansion, find the value of $\sqrt{6}$ to 6 significant figures. (3)

$$f(x) = \frac{4}{1 + 2x - 3x^2}.$$

- a Express f(x) in partial fractions. (3)
- **b** Hence, or otherwise, find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 and state the set of values of x for which the expansion is valid. (5)
- 3 a Expand $(2-x)^{-2}$, |x| < 2, in ascending powers of x up to and including the term in x^3 . (4)
 - **b** Hence, find the coefficient of x^3 in the series expansion of $\frac{3-x}{(2-x)^2}$.

4
$$f(x) \equiv \frac{4}{\sqrt{1 + \frac{2}{3}x}}, -\frac{3}{2} < x < \frac{3}{2}.$$

- a Show that $f(\frac{1}{10}) = \sqrt{15}$. (2)
- **b** Expand f(x) in ascending powers of x up to and including the term in x^2 . (3)
- c Use your expansion to obtain an approximation for $\sqrt{15}$, giving your answer as an exact, simplified fraction. (2)
- **d** Show that $3\frac{55}{63}$ is a more accurate approximation for $\sqrt{15}$.
- 5 **a** Expand $(1-x)^{\frac{1}{3}}$, |x| < 1, in ascending powers of x up to and including the term in x^2 . (3)
 - **b** By substituting $x = 10^{-3}$ in your expansion, find the cube root of 37 correct to 9 significant figures. (3)
- The series expansion of $(1 + 5x)^{\frac{3}{5}}$, in ascending powers of x up to and including the term in x^3 , is

$$1 + 3x + px^2 + qx^3$$
, $|x| < \frac{1}{5}$.

- **a** Find the values of the constants p and q.
- **b** Use the expansion with a suitable value of x to find an approximate value for $(1.1)^{\frac{3}{5}}$. (2)
- c Obtain the value of $(1.1)^{\frac{3}{5}}$ from your calculator and hence find the percentage error in your answer to part **b**. (2)
- 7 **a** Find the values of A, B and C such that

$$\frac{8-6x^2}{(1+x)(2+x)^2} \equiv \frac{A}{1+x} + \frac{B}{2+x} + \frac{C}{(2+x)^2}.$$
 (4)

b Hence find the series expansion of $\frac{8-6x^2}{(1+x)(2+x)^2}$, |x| < 1, in ascending powers of x up to and including the term in x^3 , simplifying each coefficient. (7)

8 a Expand $(1-2x)^{\frac{1}{2}}$, $|x|<\frac{1}{2}$, in ascending powers of x up to and including the term in x^2 . (3)

b By substituting
$$x = 0.0008$$
 in your expansion, find the square root of 39 correct to 7 significant figures. (4)

9 a Find the series expansion of $(1 + 8x)^{\frac{1}{3}}$, $|x| < \frac{1}{8}$, in ascending powers of x up to and including the term in x^2 , simplifying each term. (3)

b Find the exact fraction k such that

$$\sqrt[3]{5} = k\sqrt[3]{1.08}$$
 (2)

c Hence, use your answer to part a together with a suitable value of x to obtain an estimate for $\sqrt[3]{5}$, giving your answer to 4 significant figures. (3)

10 $f(x) = \frac{6x}{x^2 - 4x + 3}, |x| < 1.$

a Express f(x) in partial fractions. (3)

b Show that for small values of x,

$$f(x) \approx 2x + \frac{8}{3}x^2 + \frac{26}{9}x^3. \tag{5}$$

11 a Find the binomial expansion of $(4 + x)^{\frac{1}{2}}$ in ascending powers of x up to and including the term in x^2 and state the set of values of x for which the expansion is valid. (4)

b By substituting $x = \frac{1}{20}$ in your expansion, find an estimate for $\sqrt{5}$, giving your answer to 9 significant figures. (3)

c Obtain the value of $\sqrt{5}$ from your calculator and hence comment on the accuracy of the estimate found in part **b**. (2)

12 **a** Expand $(1+2x)^{-\frac{1}{2}}$, $|x|<\frac{1}{2}$, in ascending powers of x up to and including the term in x^3 . (4)

b Hence, show that for small values of x,

$$\frac{2-5x}{\sqrt{1+2x}} \approx 2-7x+8x^2-\frac{25}{2}x^3. \tag{3}$$

c Solve the equation

$$\frac{2-5x}{\sqrt{1+2x}} = \sqrt{3} \,. \tag{3}$$

d Use your answers to parts **b** and **c** to find an approximate value for $\sqrt{3}$.

13 a Expand $(1+x)^{-1}$, |x| < 1, in ascending powers of x up to and including the term in x^3 . (2)

b Hence, write down the first four terms in the expansion in ascending powers of x of $(1 + bx)^{-1}$, where b is a constant, for |bx| < 1. (1)

Given that in the series expansion of

$$\frac{1+ax}{1+bx}, \mid bx \mid < 1,$$

the coefficient of x is -4 and the coefficient of x^2 is 12,

c find the values of the constants a and b, (5)

d find the coefficient of x^3 in the expansion. (2)

C4 > DIFFERENTIATION

Worksheet E

1 A curve has the equation

$$3x^2 + xy - y^2 + 9 = 0$$
.

Find an expression for
$$\frac{dy}{dx}$$
 in terms of x and y. (5)

2 A curve has parametric equations

$$x = a \cos \theta$$
, $y = a(\sin \theta - \theta)$, $0 \le \theta < \pi$,

where a is a positive constant.

a Show that
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan \frac{\theta}{2}$$
. (5)

b Find, in terms of a, an equation for the tangent to the curve at the point where it crosses the y-axis. (3)

3

The diagram shows the curve with parametric equations

$$x = \cos \theta$$
, $y = \frac{1}{2}\sin 2\theta$, $0 \le \theta < 2\pi$.

a Find
$$\frac{dy}{dx}$$
 in terms of θ . (3)

- **b** Find the two values of θ for which the curve passes through the origin. (2)
- c Show that the two tangents to the curve at the origin are perpendicular to each other. (2)
- d Find a cartesian equation for the curve. (4)

4 A curve has the equation

$$x^2 - 4xy + y^2 = 24.$$

a Show that
$$\frac{dy}{dx} = \frac{x-2y}{2x-y}$$
. (4)

b Find an equation for the tangent to the curve at the point P(2, 10). (3)

The tangent to the curve at Q is parallel to the tangent at P.

$$\mathbf{c}$$
 Find the coordinates of Q . (4)

5 A curve is given by the parametric equations

$$x = t^2 + 2$$
, $y = t(t - 1)$.

a Find the coordinates of any points on the curve where the tangent to the curve is parallel to the x-axis. (5)

b Show that the tangent to the curve at the point (3, 2) has the equation

$$3x - 2y = 5.$$
 (5)

6 Find an equation for the normal to the curve with equation

$$x^3 - 3x + xy - 2y^2 + 3 = 0$$

at the point (1, 1).

Give your answer in the form y = mx + c.

(7)

(4)

7

The diagram shows the cross-section of a vase. The volume of water in the vase, $V \, \text{cm}^3$, when the depth of water in the vase is $h \, \text{cm}$ is given by

$$V = 40\pi(e^{0.1h} - 1)$$
.

The vase is initially empty and water is poured into it at a constant rate of 80 cm³ s⁻¹.

Find the rate at which the depth of water in the vase is increasing

a when
$$h=4$$
, (5)

8 A curve is given by the parametric equations

$$x = \frac{t}{1+t}, \ \ y = \frac{t}{1-t}, \ \ t \neq \pm 1.$$

a Show that
$$\frac{dy}{dx} = \left(\frac{1+t}{1-t}\right)^2$$
. (4)

b Show that the normal to the curve at the point P, where $t = \frac{1}{2}$, has the equation

$$3x + 27y = 28. (4)$$

The normal to the curve at P meets the curve again at the point Q.

c Find the exact value of the parameter
$$t$$
 at Q .

9 A curve has the equation

$$2x + x^2y - y^2 = 0$$
.

Find the coordinates of the point on the curve where the tangent is parallel to the x-axis. (8)

10 A curve has parametric equations

$$x = a \sec \theta$$
, $y = 2a \tan \theta$, $-\frac{\pi}{2} \le \theta < \frac{\pi}{2}$,

where a is a positive constant.

a Find
$$\frac{dy}{dr}$$
 in terms of θ . (3)

b Show that the normal to the curve at the point where $\theta = \frac{\pi}{4}$ has the equation

$$x + 2\sqrt{2} y = 5\sqrt{2} a. {4}$$

c Find a cartesian equation for the curve in the form $y^2 = f(x)$. (3)

C4 > DIFFERENTIATION

Worksheet F

1 A curve has parametric equations

$$x = t^2$$
, $y = \frac{2}{t}$.

- **a** Find $\frac{dy}{dx}$ in terms of t. (3)
- **b** Find an equation for the normal to the curve at the point where t=2, giving your answer in the form y=mx+c. (3)
- A curve has the equation $y = 4^x$.

Show that the tangent to the curve at the point where x = 1 has the equation

$$y = 4 + 8(x - 1) \ln 2.$$
(4)

3 A curve has parametric equations

$$x = \sec \theta$$
, $y = \cos 2\theta$, $0 \le \theta < \frac{\pi}{2}$.

- a Show that $\frac{dy}{dx} = -4\cos^3\theta$. (4)
- **b** Show that the tangent to the curve at the point where $\theta = \frac{\pi}{6}$ has the equation

$$3\sqrt{3} x + 2y = k$$

where k is an integer to be found.

(4)

4 A curve has the equation

$$2x^2 + 6xy - y^2 + 77 = 0$$

and passes through the point P(2, -5).

a Show that the normal to the curve at P has the equation

$$x + y + 3 = 0. ag{6}$$

b Find the x-coordinate of the point where the normal to the curve at P intersects the curve again. (3)

5

The diagram shows the curve with parametric equations

$$x = \theta - \sin \theta$$
, $y = \cos \theta$, $0 \le \theta \le 2\pi$.

- a Find the exact coordinates of the points where the curve crosses the x-axis. (3)
- **b** Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = -\cot\frac{\theta}{2}$. (5)
- c Find the exact coordinates of the point on the curve where the tangent to the curve is parallel to the x-axis. (2)

6 A curve has parametric equations

$$x = \sin \theta$$
, $y = \sec^2 \theta$, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

The point P on the curve has x-coordinate $\frac{1}{2}$.

- a Write down the value of the parameter θ at P. (1)
- **b** Show that the tangent to the curve at P has the equation

$$16x - 9y + 4 = 0. (6)$$

c Find a cartesian equation for the curve. (2)

7 A curve has the equation

$$2\sin x - \tan 2y = 0.$$

a Show that
$$\frac{dy}{dx} = \cos x \cos^2 2y$$
. (4)

b Find an equation for the tangent to the curve at the point $(\frac{\pi}{3}, \frac{\pi}{6})$, giving your answer in the form ax + by + c = 0.

8

A particle moves on the ellipse shown in the diagram such that at time t its coordinates are given by

$$x = 4 \cos t$$
, $y = 3 \sin t$, $t \ge 0$.

a Find
$$\frac{dy}{dx}$$
 in terms of t. (3)

b Show that at time t, the tangent to the path of the particle has the equation

$$3x \cos t + 4y \sin t = 12.$$
 (3)

- c Find a cartesian equation for the path of the particle. (3)
- 9 The curve with parametric equations

$$x = \frac{t}{t+1}, \ \ y = \frac{2t}{t-1},$$

passes through the origin, O.

a Show that
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\left(\frac{t+1}{t-1}\right)^2$$
. (4)

- **b** Find an equation for the normal to the curve at O. (2)
- c Find the coordinates of the point where the normal to the curve at O meets the curve again. (4)
- d Show that the cartesian equation of the curve can be written in the form

$$y = \frac{2x}{2x - 1}.\tag{4}$$

24 > INTEGRATION

Worksheet N

1 Show that

$$\int_{2}^{7} \frac{8}{4x - 3} \, \mathrm{d}x = \ln 25. \tag{4}$$

Given that $y = \frac{\pi}{4}$ when x = 1, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x \sec y \csc^3 y. \tag{7}$$

3 a Use the trapezium rule with three intervals of equal width to find an approximate value for the integral

$$\int_0^{1.5} e^{x^2 - 1} dx.$$
 (4)

b Use the trapezium rule with six intervals of equal width to find an improved approximation for the above integral.

4 $f(x) = \frac{3(2-x)}{(1-2x)^2(1+x)}$.

- a Express f(x) in partial fractions. (4)
- **b** Show that

$$\int_{1}^{2} f(x) dx = 1 - \ln 2.$$
 (6)

- The rate of growth in the number of yeast cells, N, present in a culture after t hours is proportional to N.
 - a By forming and solving a differential equation, show that

$$N = Ae^{kt}$$

where A and k are positive constants.

Initially there are 200 yeast cells in the culture and after 2 hours there are 3000 yeast cells in the culture. Find, to the nearest minute, after how long

b there are 10 000 yeast cells in the culture, (5)

c the number of yeast cells is increasing at the rate of 5 per second. (4)

6

The diagram shows part of the curve with equation $y = \frac{1}{\sqrt{2x+1}}$.

The shaded region is bounded by the curve, the coordinate axes and the line x = 4.

a Find the area of the shaded region.

(4)

(2)

(4)

The shaded region is rotated through four right angles about the *x*-axis.

b Find the volume of the solid formed, giving your answer in the form $\pi \ln k$.

(5)

(7)

(5)

(4)

(3)

7 Using the substitution $u^2 = x + 3$, show that

$$\int_0^1 x\sqrt{x+3} \ dx = k(3\sqrt{3} - 4),$$

where k is a rational number to be found.

8 a Use the identities for $\sin (A + B)$ and $\sin (A - B)$ to prove that

$$2\sin A\cos B \equiv \sin (A+B) + \sin (A-B). \tag{2}$$

The diagram shows the curve given by the parametric equations

$$x = 2 \sin 2t$$
, $y = \sin 4t$, $0 \le t < \pi$.

b Show that the total area enclosed by the two loops of the curve is given by

$$\int_0^{\frac{\pi}{4}} 16 \sin 4t \cos 2t \, dt. \tag{4}$$

c Evaluate this integral.

9

$$f(x) \equiv \frac{x^2 - 22}{(x+2)(x-4)}$$
.

a Find the values of the constants A, B and C such that

$$f(x) \equiv A + \frac{B}{x+2} + \frac{C}{x-4}$$
 (3)

The finite region R is bounded by the curve y = f(x), the coordinate axes and the line x = 2.

b Find the area of R, giving your answer in the form $p + \ln q$, where p and q are integers. (5)

10 a Find
$$\int \sin^2 x \, dx$$
. (4)

b Use integration by parts to show that

$$\int x \sin^2 x \, dx = \frac{1}{8} (2x^2 - 2x \sin 2x - \cos 2x) + c,$$

where c is an arbitrary constant.

The diagram shows the curve with equation $y = x^{\frac{1}{2}} \sin x$, $0 \le x \le \pi$.

The finite region R, bounded by the curve and the x-axis, is rotated through 2π radians about the x-axis.

c Find the volume of the solid formed, giving your answer in terms of π .

C4 >

INTEGRATION

Worksheet O

1 a Express $\frac{1}{x^2 - 3x + 2}$ in partial fractions. (3)

b Show that

$$\int_3^4 \frac{1}{x^2 - 3x + 2} \, \mathrm{d}x = \ln \frac{a}{b},$$

where a and b are integers to be found.

2 Evaluate

$$\int_0^{\frac{\pi}{6}} \cos x \cos 3x \, dx. \tag{6}$$

3 a Find the quotient and remainder obtained in dividing $(x^2 + x - 1)$ by (x - 1).

b Hence, show that

$$\int \frac{x^2 + x - 1}{x - 1} dx = \frac{1}{2}x^2 + 2x + \ln|x - 1| + c,$$

where c is an arbitrary constant.

(2)

(5)

The diagram shows the curve with equation $y = 2 - \frac{1}{\sqrt{x}}$.

The shaded region bounded by the curve, the x-axis and the lines x = 1 and x = 4 is rotated through 360° about the x-axis to form the solid S.

a Show that the volume of S is $2\pi(2 + \ln 2)$. (6)

S is used to model the shape of a container with 1 unit on each axis representing 10 cm.

b Find the volume of the container correct to 3 significant figures. (2)

5 a Use integration by parts to find $\int x \ln x \, dx$. (4)

b Given that y = 4 when x = 2, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = xy \ln x, \quad x > 0, \quad y > 0,$$

and hence, find the exact value of y when x = 1.

6 a Evaluate $\int_0^{\frac{\pi}{3}} \sin x \sec^2 x \, dx$. (4)

b Using the substitution $u = \cos \theta$, or otherwise, show that

$$\int_0^{\frac{\pi}{4}} \frac{\sin \theta}{\cos^4 \theta} d\theta = a + b\sqrt{2},$$

where a and b are rational.

(6)

(5)

7

The diagram shows part of the curve with parametric equations

$$x = 2t + 1$$
, $y = \frac{1}{2-t}$, $t \neq 2$.

The shaded region is bounded by the curve, the coordinate axes and the line x = 3.

- a Find the value of the parameter t at the points where x = 0 and where x = 3. (2)
- **b** Show that the area of the shaded region is $2 \ln \frac{5}{2}$. (5)
- c Find the exact volume of the solid formed when the shaded region is rotated completely about the x-axis. (5)
- 8 a Using integration by parts, find

$$\int 6x \cos 3x \, dx. \tag{5}$$

b Use the substitution $x = 2 \sin u$ to show that

$$\int_0^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} \, \mathrm{d}x = \frac{\pi}{3}. \tag{5}$$

In an experiment to investigate the formation of ice on a body of water, a thin circular disc of ice is placed on the surface of a tank of water and the surrounding air temperature is kept constant at -5° C.

In a model of the situation, it is assumed that the disc of ice remains circular and that its area, $A ext{ cm}^2$ after t minutes, increases at a rate proportional to its perimeter.

a Show that

$$\frac{\mathrm{d}A}{\mathrm{d}t} = k\sqrt{A} \;,$$

where k is a positive constant.

(3)

b Show that the general solution of this differential equation is

$$A = (pt + q)^2,$$

where p and q are constants.

(4)

Given that when t = 0, A = 25 and that when t = 20, A = 40,

c find how long it takes for the area to increase to 50 cm².

(5)

10 $f(x) = \frac{5x+1}{(1-x)(1+2x)}.$

- a Express f(x) in partial fractions. (3)
- **b** Find $\int_0^{\frac{1}{2}} f(x) dx$, giving your answer in the form $k \ln 2$. (4)
- c Find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 , for $|x| < \frac{1}{2}$. (6)

Worksheet E

(3)

1 Relative to a fixed origin, the line *l* has vector equation

$$\mathbf{r} = \mathbf{i} - 4\mathbf{j} + p\mathbf{k} + \lambda(2\mathbf{i} + q\mathbf{j} - 3\mathbf{k}),$$

where λ is a scalar parameter.

Given that l passes through the point with position vector $(7\mathbf{i} - \mathbf{j} - \mathbf{k})$,

- **a** find the values of the constants p and q,
- **b** find, in degrees, the acute angle *l* makes with the line with equation

$$r = 3i + 4j - 3k + \mu(-4i + 5j - 2k).$$
 (4)

The points A and B have position vectors $\begin{pmatrix} 1 \\ 6 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ 0 \\ -6 \end{pmatrix}$ respectively, relative to a

fixed origin.

a Find, in vector form, an equation of the line l which passes through A and B. (2)

The line m has equation

$$\mathbf{r} = \begin{pmatrix} 5 \\ -5 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix}.$$

Given that lines l and m intersect at the point C,

- **b** find the position vector of C, (5)
- c show that C is the mid-point of AB. (2)
- Relative to a fixed origin, the points P and Q have position vectors $(5\mathbf{i} 2\mathbf{j} + 2\mathbf{k})$ and $(3\mathbf{i} + \mathbf{j})$ respectively.
 - a Find, in vector form, an equation of the line L_1 which passes through P and Q. (2) The line L_2 has equation

$$r = 4i + 6j - k + \mu(5i - j + 3k).$$

- **b** Show that lines L_1 and L_2 intersect and find the position vector of their point of intersection.
- c Find, in degrees to 1 decimal place, the acute angle between lines L_1 and L_2 . (4)
- 4 Relative to a fixed origin, the lines l_1 and l_2 have vector equations as follows:

$$l_1$$
: $\mathbf{r} = 5\mathbf{i} + \mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + 2\mathbf{k}),$
 l_2 : $\mathbf{r} = 7\mathbf{i} - 3\mathbf{j} + 7\mathbf{k} + \mu(-\mathbf{i} + \mathbf{j} - 2\mathbf{k}),$

where λ and μ are scalar parameters.

a Show that lines l_1 and l_2 intersect and find the position vector of their point of intersection.

(6)

(6)

The points A and C lie on l_1 and the points B and D lie on l_2 .

Given that ABCD is a parallelogram and that A has position vector $(9\mathbf{i} - 2\mathbf{j} + 5\mathbf{k})$,

b find the position vector of C. (3)

Given also that the area of parallelogram ABCD is 54,

c find the distance of the point B from the line l_1 . (4)

(4)

- Relative to a fixed origin, the points A and B have position vectors $(4\mathbf{i} + 2\mathbf{j} 4\mathbf{k})$ and $(2\mathbf{i} \mathbf{j} + 2\mathbf{k})$ respectively.
 - a Find, in vector form, an equation of the line l_1 which passes through A and B. (2)

The line l_2 passes through the point C with position vector $(4\mathbf{i} - 7\mathbf{j} - \mathbf{k})$ and is parallel to the vector $(6\mathbf{i} - 2\mathbf{k})$.

- **b** Write down, in vector form, an equation of the line l_2 . (1)
- c Show that A lies on l_2 . (2)
- **d** Find, in degrees, the acute angle between lines l_1 and l_2 . (4)
- 6 The points A and B have position vectors $\begin{pmatrix} 5 \\ -1 \\ -10 \end{pmatrix}$ and $\begin{pmatrix} 4 \\ 1 \\ -8 \end{pmatrix}$ respectively, relative to a

fixed origin O.

a Find, in vector form, an equation of the line l which passes through A and B. (2)

The line l intersects the y-axis at the point C.

b Find the coordinates of C. (2)

The point D on the line l is such that OD is perpendicular to l.

- \mathbf{c} Find the coordinates of D. (5)
- **d** Find the area of triangle *OCD*, giving your answer in the form $k\sqrt{5}$.
- Relative to a fixed origin, the line l_1 has the equation

$$\mathbf{r} = \begin{pmatrix} 1 \\ -6 \\ -2 \end{pmatrix} + s \begin{pmatrix} 0 \\ 4 \\ -1 \end{pmatrix}.$$

a Show that the point P with coordinates (1, 6, -5) lies on l_1 . (1)

The line l_2 has the equation

$$\mathbf{r} = \begin{pmatrix} 4 \\ -4 \\ -1 \end{pmatrix} + t \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix},$$

and intersects l_1 at the point Q.

b Find the position vector of Q. (3)

The point R lies on l_2 such that PQ = QR.

- c Find the two possible position vectors of the point R. (5)
- Relative to a fixed origin, the points A and B have position vectors $(4\mathbf{i} + 5\mathbf{j} + 6\mathbf{k})$ and $(4\mathbf{i} + 6\mathbf{j} + 2\mathbf{k})$ respectively.
 - **a** Find, in vector form, an equation of the line l_1 which passes through A and B. (2)

The line l_2 has equation

$$\mathbf{r} = \mathbf{i} + 5\mathbf{i} - 3\mathbf{k} + \mu(\mathbf{i} + \mathbf{i} - \mathbf{k}).$$

- **b** Show that l_1 and l_2 intersect and find the position vector of their point of intersection.
- c Find the acute angle between lines l_1 and l_2 . (3)
- **d** Show that the point on l_2 closest to A has position vector $(-\mathbf{i} + 3\mathbf{j} \mathbf{k})$. (5)

Worksheet F

1 The points A and B have position vectors $\begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 3 \\ -4 \end{pmatrix}$ respectively, relative to a

fixed origin.

a Find, in vector form, an equation of the line l which passes through A and B. (2) The line m has equation

$$\mathbf{r} = \begin{pmatrix} 6 \\ -5 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} a \\ -3 \\ 1 \end{pmatrix},$$

where a is a constant.

Given that lines *l* and *m* intersect,

- **b** find the value of a and the coordinates of the point where l and m intersect. (6)
- Relative to a fixed origin, the points A, B and C have position vectors $(-4\mathbf{i} + 2\mathbf{j} \mathbf{k})$, $(2\mathbf{i} + 5\mathbf{j} 7\mathbf{k})$ and $(6\mathbf{i} + 4\mathbf{j} + \mathbf{k})$ respectively.
 - a Show that $\cos(\angle ABC) = \frac{1}{3}$. (3)

The point M is the mid-point of AC.

- **b** Find the position vector of M. (2)
- c Show that BM is perpendicular to AC. (3)
- d Find the size of angle ACB in degrees. (3)
- Relative to a fixed origin O, the points A and B have position vectors $\begin{pmatrix} 9 \\ 5 \\ -3 \end{pmatrix}$ and $\begin{pmatrix} 11 \\ 7 \\ -3 \end{pmatrix}$ respectively.
 - **a** Find, in vector form, an equation of the line L which passes through A and B. (2) The point C lies on L such that OC is perpendicular to L.
 - **b** Find the position vector of C. (5)
 - c Find, to 3 significant figures, the area of triangle *OAC*. (3)
 - **d** Find the exact ratio of the area of triangle OAB to the area of triangle OAC. (2)
- Relative to a fixed origin O, the points A and B have position vectors $(7\mathbf{i} 5\mathbf{j} \mathbf{k})$ and $(4\mathbf{i} 5\mathbf{j} + 3\mathbf{k})$ respectively.
 - a Find cos ($\angle AOB$), giving your answer in the form $k\sqrt{6}$, where k is an exact fraction. (4)
 - **b** Show that AB is perpendicular to OB. (3)

The point C is such that $\overrightarrow{OC} = \frac{3}{2} \overrightarrow{OB}$.

- c Show that AC is perpendicular to OA. (3)
- **d** Find the size of $\angle ACO$ in degrees to 1 decimal place. (3)