\qquad

Dr Mike Barry and Dr David Barton

Department of Engineering Mathematics
University of Bristol

㥜

Solving ODEs: integrating factors

Sometimes we are fortunate and have an ODE which can be written in the form

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f(x)=g(t)
$$

This is called an exact equation. Integrating both sides with respect to t gives

$$
f(x)=\int g(t) \mathrm{d} t
$$

For example,

$$
\begin{gathered}
t^{3} \frac{\mathrm{~d} x}{\mathrm{~d} t}+3 t^{2} x=\mathrm{e}^{2 t} \\
\Rightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} t}\left(t^{3} x\right)=\mathrm{e}^{2 t} \quad \text { (collect terms) } \\
\Rightarrow \quad t^{3} x=\frac{1}{2} \mathrm{e}^{2 t}+C \quad \text { (integrate w.r.t. } t \text {) } \\
\left.\Rightarrow \quad x(t)=\frac{\mathrm{e}^{2 t}}{2 t^{3}}+\frac{C}{t^{3}} \quad \text { (solve for } x\right)
\end{gathered}
$$

Solving ODEs: integrating factors

It is unusual to find an ODE in exact form. However, we can often put an ODE into exact form by multiplying by an integrating factor.
\qquad
\qquad

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}+p(t) x=0
$$

This can be solved by separation of variables:

$$
\begin{aligned}
& \frac{1}{x} \frac{\mathrm{~d} x}{\mathrm{~d} t}=-p(t) \\
\Rightarrow \quad & \int \frac{1}{x} \mathrm{~d} x=-\int p(t) \mathrm{d} t \\
\Rightarrow \quad & \ln (x(t))=-\int p(t) \mathrm{d} t+C \\
\Rightarrow \quad & x(t)=\mathrm{e}^{-\int p(t) \mathrm{d} t+C} \\
\Rightarrow \quad & x(t)=A \mathrm{e}^{-\int p(t) \mathrm{d} t}
\end{aligned}
$$

Solving ODEs: integrating factors

Thus an equation of the form

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}+p(t) x=0
$$

can be made exact by multiplying through by $\mathrm{e}^{\int p(t) \mathrm{d} t}$ to give

$$
\begin{gathered}
\mathrm{e}^{\int p(t) \mathrm{d} t} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\mathrm{e}^{\int p(t) \mathrm{d} t} p(t) x=0 \\
\Rightarrow \quad \\
\Rightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} t}\left(x \mathrm{e}^{\int p(t) \mathrm{d} t}\right)=0 \\
\Rightarrow \quad x \mathrm{e}^{\int p(t) \mathrm{d} t}=A \\
\Rightarrow \quad x=A \mathrm{e}^{-\int p(t) \mathrm{d} t}
\end{gathered}
$$

For homogeneous equations this technique is of limited use, but for non-homogeneous equations of the (inseparable) form

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}+p(t) x=r(t)
$$

the integrating factor $\mathrm{e}^{\int p(t) \mathrm{d} t}$ is extremely useful.

Solving ODEs: integrating factors

Example

Take the first order, linear, homogeneous ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}+\frac{1}{t} x=0
$$

Comparing this against

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}+p(t) x=0
$$

we see that $p(t)=\frac{1}{t}$, which implies

$$
\begin{aligned}
x(t) & =A \mathrm{e}^{-\int \frac{1}{t} \mathrm{~d} t} \\
\Rightarrow \quad & =A \mathrm{e}^{-\ln (t)} \\
\Rightarrow \quad & =\frac{A}{t}
\end{aligned}
$$

Solving ODEs: integrating factors

Now consider the non-homogeneous case

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}+p(t) x=r(t)
$$

This is slightly more difficult but more useful (can't just use separation of variables).

Remember that by multiplying by the integrating factor we can put the left-hand-side into exact form:

$$
\begin{gathered}
\mathrm{e}^{\int p(t) \mathrm{d} t} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\mathrm{e}^{\int p(t) \mathrm{d} t} p(t) x=\mathrm{e}^{\int p(t) \mathrm{d} t} r(t) \\
\Rightarrow \quad \frac{\mathrm{d}}{\mathrm{~d} t}\left(x \mathrm{e}^{\int p(t) \mathrm{d} t}\right)=\mathrm{e}^{\int p(t) \mathrm{d} t} r(t) \\
\Rightarrow \quad x \mathrm{e}^{\int p(t) \mathrm{d} t}=\int \mathrm{e}^{\int p(t) \mathrm{d} t} r(t) \mathrm{d} t+C \\
\Rightarrow \quad x(t)=\mathrm{e}^{-\int p(t) \mathrm{d} t}\left(\int \mathrm{e}^{\int p(t) \mathrm{d} t} r(t) \mathrm{d} t+C\right)
\end{gathered}
$$

Example

Consider the linear, non-homogeneous, first-order ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}+\frac{1}{t} x=t^{2} \quad \text { with } \quad x(2)=\frac{1}{3}
$$

Clearly $p(t)=\frac{1}{t}$ and so the integrating factor is

$$
\mathrm{IF}=\mathrm{e}^{\int p(t) \mathrm{d} t}=\mathrm{e}^{\int \frac{1}{t} \mathrm{~d} t}=\mathrm{e}^{\ln (t)+C}=A \mathrm{e}^{\ln (t)}=A t
$$

Multiply through by the integrating factor

$$
A t \frac{\mathrm{~d} x}{\mathrm{~d} t}+A t \frac{1}{t} x=A t^{3}
$$

Notice that the integration constant factors out; this is always the case, thus we can ignore the integration constant when calculating the integrating factor.

Solving ODEs: integrating factors

This is now an exact equation

$$
t \frac{\mathrm{~d} x}{\mathrm{~d} t}+x=\frac{\mathrm{d}}{\mathrm{~d} t}(t x)=t^{3}
$$

Thus the general solution is

$$
\begin{aligned}
& t x=\int t^{3} \mathrm{~d} t=\frac{1}{4} t^{4}+C \\
& \Rightarrow \quad x(t)=\frac{1}{4} t^{3}+\frac{C}{t}
\end{aligned}
$$

Finally, use the initial condition to calculate the value of C

$$
\begin{gathered}
x(2)=\frac{1}{4} 2^{3}+\frac{C}{2}=\frac{1}{3} \\
\Rightarrow \quad C=-\frac{10}{3}
\end{gathered}
$$

Thus the particular solution is

$$
x(t)=\frac{1}{4} t^{3}-\frac{10}{3 t}
$$

Solving ODEs: integrating factors

Example

Consider the linear, first-order, non-homogeneous ODE

$$
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+x y=x+1 \quad \Rightarrow \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{y}{x}=\frac{1}{x}+\frac{1}{x^{2}}
$$

Thus the integrating factor is

$$
\mathrm{IF}=\mathrm{e}^{\int \frac{1}{x} \mathrm{~d} x}=\mathrm{e}^{\ln (x)}=x
$$

Thus

$$
\begin{aligned}
& x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\frac{\mathrm{d}}{\mathrm{~d} x}(x y)=1+\frac{1}{x} \\
\Rightarrow \quad & x y=\int 1+\frac{1}{x} \mathrm{~d} x=x+\ln (x)+C \\
\Rightarrow & y(x)=1+\frac{\ln (x)+C}{x}
\end{aligned}
$$

Exercise

Classify and solve

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}+t x=t
$$

Solving ODEs: integrating factors

James, Modern Engineering Mathematics

Read sections 10.5.9.

Attempt a selection of exercises from 10.5.11, questions 31 to 34

Solving ODEs: other exact equations

Integrating factors give us a straightforward way to solve linear, first-order differential equations. However, exact equations may also be non-linear and not amenable to integrating factors.

Thus, if we can spot that a non-linear equation is exact, we have an easy way of solving it. Consider the general first-order ODE

$$
q(x, t) \frac{\mathrm{d} x}{\mathrm{~d} t}+p(x, t)=0
$$

If the equation is exact, then there exists a function $h(x, t)$ such that
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=0 \quad \text { such that } \quad \frac{\partial h}{\partial x}=q(x, t) \quad \text { and } \quad \frac{\partial h}{\partial t}=p(x, t)
$$

(Remember that

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\partial h}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial h}{\partial t}
$$

is the link between total derivatives and partial derivatives.)

Clearly, if we can find such a function $h(x, t)$ then the solution to this (potentially non-linear) ODE is easy

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=0 \quad \Rightarrow \quad h(x, t)=C
$$

It is then just a case of rearranging to find x.

Solving ODEs: other exact equations

A simple example of this is

$$
t^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 x t=\cos (t)
$$

It is possible to solve this equation using an integrating factor (since it is linear) to find that

$$
h(x, t)=x t^{2}-\sin (t)
$$

Check:

$$
\frac{\partial h}{\partial x}=q(x, t)=t^{2} \quad \text { and } \quad \frac{\partial h}{\partial t}=p(x, t)=2 x t-\cos (t)
$$

Solving ODEs: other exact equations

For a given ODE, how do we determine if it is in exact form?

Check the partial derivatives; if $h(x, t)$ is continuous then we know that

$$
\frac{\partial^{2} h}{\partial x \partial t}=\frac{\partial^{2} h}{\partial t \partial x}
$$

Since we have $\frac{\partial h}{\partial x}=q(x, t)$ and $\frac{\partial h}{\partial t}=p(x, t)$ we can calculate both second derivatives and check that they are equal; i.e.,

$$
\frac{\partial q}{\partial t}=\frac{\partial p}{\partial x}
$$

where

$$
q(x, t) \frac{\mathrm{d} x}{\mathrm{~d} t}+p(x, t)=0
$$

If the two derivatives are not equal, then the equation is not exact.

Example

Consider the non-linear, non-homogeneous, first-order ODE

$$
(x+t) \frac{\mathrm{d} x}{\mathrm{~d} t}-x=-t
$$

In this case

$$
q(x, t)=x+t \quad \text { and } \quad p(x, t)=t-x
$$

Check that this is an exact equation

$$
\frac{\partial q}{\partial t}=1 \quad \text { and } \quad \frac{\partial p}{\partial x}=-1
$$

It isn't so stop.

Solving ODEs: other exact equations

Example

Consider the non-linear, non-homogeneous, first-order ODE

$$
\frac{t+1}{x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\ln (x)=\cos (t)
$$

In this case

$$
q(x, t)=\frac{t+1}{x} \quad \text { and } \quad p(x, t)=\ln (x)-\cos (t)
$$

Check that this is an exact equation

$$
\frac{\partial q}{\partial t}=\frac{1}{x} \quad \text { and } \quad \frac{\partial p}{\partial x}=\frac{1}{x}
$$

It is, so now we need to calculate $h(x, t)$.

Solving ODEs: other exact equations

Now we integrate $\frac{\partial h}{\partial x}$ with respect to x

$$
h(x, t)=\int q(x, t) \mathrm{d} x=\int \frac{t+1}{x} \mathrm{~d} x=(t+1) \int \frac{1}{x} \mathrm{~d} x
$$

$$
=(t+1)[\ln (x)+C(t)]
$$

The key thing to remember is that C is a function of t and we need to determine it.

Now we integrate $\frac{\partial h}{\partial t}$ with respect to t

$$
h(x, t)=\int p(x, t) \mathrm{d} t=\int \ln (x)-\cos (t) \mathrm{d} t=\ln (x) t-\sin (t)+D(x)
$$

This time, since we integrated with respect to t, the integration constant is a function of x. Now we compare the two expressions
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\ln (x) t-\sin (t)+D(x)=(t+1)[\ln (x)+C(t)]
$$

Since $D(x)$ cannot contain terms involving t and, similarly, $C(t)$ cannot contain terms involving x, we can determine (up to a constant) C and D uniquely.

In this case

$$
D(x)=\ln (x) \quad \text { and } \quad C(t)=-\frac{\sin (t)}{t+1}
$$

to give an implicit solution of

$$
h(x, t)=(t+1) \ln (x)-\sin (t)=E
$$

Thus, the general solution is

$$
x(t)=\mathrm{e}^{\frac{E+\sin (t)}{t+1}}
$$

Solving ODEs: other exact equations

Solving ODEs: other exact equations

Exercise

Determine if the following ODE is exact and, if so, find its solution

$$
\cos (t) \frac{\mathrm{d} x}{\mathrm{~d} t}-x \sin (t)=1
$$

James, Modern Engineering Mathematics \qquad
Read sections 10.5.7.
Attempt a selection of exercises from 10.5.8.

