## Advanced Notice Article for F332 - June 2013- Questions based upon the Article.

1) Draw dot and cross structures for $\mathrm{N}_{2}$ and $\mathrm{N}_{2} \mathrm{O}$ based upon the structures suggested in the article.
2) One structure suggested for ozone is $\mathrm{O}=\mathrm{O} \rightarrow \mathrm{O}$.
(a)Draw a dot and cross diagram to represent this structure.
(b) Predict and explain the bond angle. Bond angle $=$ $\qquad$ ${ }^{\circ} \quad$ (1)

Reason:
(c) What name is given to the shape of the ozone molecule?
3) Give the oxidation states of nitrogen in
$\mathrm{NO}_{2}$ $\qquad$ $\mathrm{HNO}_{3}$ $\qquad$ NO $\qquad$ $\mathrm{NH}_{3}$ $\qquad$
$\left(\mathrm{NH}_{4}{ }^{+}\right)_{2} \mathrm{SO}_{4}{ }^{2-}$ $\qquad$ (5)
4) $2 \mathrm{NH}_{4}{ }^{+}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}{ }^{-}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+}$
(a) In the equation above use oxidation states (numbers) to indicate which element is
(i) oxidised $\qquad$ (1)
(ii) reduced $\qquad$ (1)
(b) Name the reducing agent in the equation $\qquad$
5) Name the species OH and use a dot and cross diagram to explain why it is referred to as a radical. Dot and cross:

Name $\qquad$ (1) Radical because :
6) (a) Which property of ammonia makes it readily removable from the atmosphere by "wet deposition"?
(b) Draw a diagram showing the strongest intermolecular bond formed between water and ammonia indicating any lone pairs and partial charges.
7) For the reaction $\mathrm{NO}_{2}+\mathrm{hv} \rightarrow \mathrm{NO}+\mathrm{O}$, what type of bond breaking is involved?
$\qquad$ (2)
8) Assuming $\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{O}$ and $\mathrm{O}_{2}$ are classed as radicals, find from the article
(a) two equations that can be described as "initiation" reactions. (2)
(b) five examples of "propagation" reactions (5)
(c) Two examples of "termination" reactions. (2)
9) Write a balanced equation with state symbols showing the conversion of carbon monoxide and nitrogen monoxide to nitrogen and carbon dioxide in the three way catalytic converter.

$$
\begin{equation*}
\rightarrow \tag{3}
\end{equation*}
$$

10) Peroxyacetylnitrate (PAN) has formula $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{O}_{2} \mathrm{NO}_{2}$. Assuming the nitrogen forms one single dative bond to one of the end oxygen atoms and the molecule contains one $\mathrm{O}-\mathrm{O}$ single bond, draw a full structural formula for PAN.
11) The loss of $\mathrm{NO}_{x}$ by wet deposition from the atmosphere contributes to which environmental problem?
12) What is unique about ammonia gas in the Earth's atmosphere and write an equation to show how it could use this property to react with another compound in shown in figure 3.

Property
Equation
13) (a) Combine the equations shown below to show that they do represent the interconversion of NO and $\mathrm{NO}_{2}$.
$\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2} \quad \mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{O} \quad \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{O}_{3}$
Combined:

Overall reaction :
(b) Suggest (considering all substances are in the gaseous state) the exact terms used to describe role of Ozone in this interconversion and justify your answer.
(c) What term could be used to describe the species O and $\mathrm{O}_{2}$ in this process?
15) (a) Draw the full structural formula of urea $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
(b) Urea breaks down in the presence of water to form just two simple gases one of which is alkaline. Write a balanced equation for this reaction.
16) A nitrogen molecule $N_{2}$ contains triple covalent bonds. The data book value for the bond enthalpy of $\mathrm{N}_{2}$ is $+945.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The Avogadro constant is $6.02 \times 10^{23} \mathrm{~mol}^{-1}$ and Planck's constant is $6.63 \times 10^{-34} \mathrm{JHz}^{-1}$.
(a) Calculate the energy (to 3 significant figures) needed to break the triple bond in a single molecule of $\mathrm{N}_{2}$. Indicate suitable units and show working.

Working
$\qquad$ units = $\qquad$ (4)
(b) Using answer (a) calculate the frequency of a photon of radiation needed to break this bond giving your answer to 3 sig figs.

Frequency $\qquad$ Hz (2)
(c) Use your answer to (b) and the formula

Speed of light $\left(m s^{-1}\right)=$ frequency $(\mathrm{Hz}) x$ wavelength $(m) \quad(c=\lambda v)$
to calculate the wavelength of radiation needed to break up a molecule of $\mathrm{N}_{2}$. Express your final answer in nanometres to 3 sig figs. Speed of light $\mathrm{c}=3.00 \times 10^{8} \mathrm{~ms}^{-1} 1 \mathrm{~nm}=10^{-9} \mathrm{~m}$.
$\qquad$ m

Wavelength $=$ $\qquad$ nm (3)
17) $\mathrm{N}_{2} \mathrm{O}$ is present in air at a concentration of 310 ppbv .
(a) Given a cubic metre contains $10^{6} \mathrm{~cm}^{3}$, calculate how many $\mathrm{cm}^{3}$ of $\mathrm{N}_{2} \mathrm{O}$ would be in a cubic metre of air.
(b) 1 mole of any gas occupies $24 \mathrm{dm}^{3}$ at room temperature and pressure, so use answer (a) to find out how many moles (to 3 sig figs) of $\mathrm{N}_{2} \mathrm{O}$ are in a cubic metre of air.
$\qquad$ mol (2)
(c) A cubic metre contains $1000 \mathrm{dm}^{3}$. Use this and answer (b) to express the concentration of $\mathrm{N}_{2} \mathrm{O}$ in air in $\mathrm{mol} \mathrm{dm}{ }^{-3}$.
$\qquad$ $\mathrm{mol} \mathrm{dm}^{-3}(1)$
(d) Using answer (c) convert your answer to a concentration of $\mathrm{N}_{2} \mathrm{O}$ in $\mathrm{g} \mathrm{dm}^{-3}\left(\mathrm{~A}_{\mathrm{r}} \quad \mathrm{N}=14.0, \mathrm{O}=16.0\right)$.
18) The rate of formation of NO from the reaction between $\mathrm{N}_{2}$ and $\mathrm{O}_{2}$ in the air is negligible at ordinary temperatures but becomes significant at the temperature of an engine. Explain this in terms of particles and energy. (5)

