Edexcel GCE A Level Maths: C3 Summary Sheet

1. Algebraic Fractions

$\mathrm{F}(x)=\mathrm{Q}(x)$ x Divisor + Remainder

2. Functions

Domain $\Rightarrow F \Rightarrow$ Range
Range $\Rightarrow F^{-1} \Rightarrow$ Domain
Function: Every element in the domain is mapped to exactly one element of the range. $\mathrm{Fg}(x)$ mean $\mathrm{F}[\mathrm{g}(x)], \mathrm{F}^{-1}$ is the inverse, and is a reflection of F in $y=x$.

3. The Exponential

$y=\mathrm{a}^{x}$ passes through $(0,1)$ as $\mathrm{a}^{0}=1$.
$e=2.718 . ., y=e^{x} \Rightarrow \mathrm{~d} y / \mathrm{d} x=e^{x}$

$\log _{\mathrm{e}} \mathrm{x}=\ln x, \mathrm{x}>0$
$y=\ln x$ passes through $(1,0)$

4. Numerical Methods

For continuous functions if $\mathrm{f}(x)$ undergoes a sign change in an interval then the interval has a root of the equation $\mathrm{f}(x)=0$. This can be used to prove your answer is correct to so many dp after using iteration equations. Iteration can sometimes be used to solve equations of the form: $x_{n+1}=\mathrm{g}(x)$.

5. Transforming Graphs

 $y=\mathrm{f}(\mathrm{x})$
$y=|\mathrm{f}(\mathrm{x})| \quad y$ takes all the values of the

function as positive, so where x is negative the graph appears to be a reflection in the line $\mathrm{y}=0$.
$y=\mathrm{f}(|\mathrm{x}|)$

All values of x are made positive and then function f is applied to them. The resulting curve should be symmetrical in the y axis.

6. Trigonometry

$\sec \theta=1 / \cos \theta \quad \operatorname{cosec} \theta=1 / \sin \theta$
$\cot \theta=1 / \tan \theta=\cos \theta / \sin \theta$

$$
y=\sec \theta \quad y=\operatorname{cosec} \theta \quad y=\cot \theta
$$

$1+\tan ^{2} \theta=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
$\arcsin x, \arccos x$ and $\arctan x$ are the inverse trig. functions (reflected in $y=x$).

7. Further Trigonometry

$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin \mathrm{~B}$
$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$\tan (\mathrm{A} \pm \mathrm{B})=[\tan \mathrm{A} \pm \tan \mathrm{B}] /[1 \mp \tan \mathrm{~A} \tan \mathrm{~B}]$
Double angle formulae can be generated from those above by substituting $\mathrm{A}=\mathrm{B}$.
$\sin 2 \mathrm{~A}=2 \sin \mathrm{~A} \cos \mathrm{~A} \quad$ These are NOT given. $\cos 2 \mathrm{~A}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$ $=1-2 \sin ^{2} \mathrm{~A}$ $\tan 2 \mathrm{~A}=2 \tan \mathrm{~A} /\left[1-\tan ^{2} \mathrm{~A}\right]$
Equations like $\mathrm{a} \cos \theta+\mathrm{b} \sin \theta=\mathrm{c}$ can be solved by the R formula, but if $\mathrm{c}=0$ it is easier to use $\sin \theta / \cos \theta=\tan \theta$. Sums of sines and cosines can be expressed as multiples using the P / Q formulae which are all given in the booklet.

8. Differentiation

$\mathrm{d} y / \mathrm{d} x=\mathrm{d} y / \mathrm{d} u \times \mathrm{d} u / \mathrm{d} x$ (the chain rule).
One result yields: $\mathrm{d} x / \mathrm{d} y=1 /[\mathrm{d} y / \mathrm{d} x]$.
$\mathrm{d} y / d x=u(\mathrm{~d} v / \mathrm{d} x)+v(\mathrm{~d} u / \mathrm{d} x)($ for $y=u v)$
$\mathrm{d} y / \mathrm{d} x=[v(\mathrm{~d} u / \mathrm{d} x)-u(\mathrm{~d} v / \mathrm{d} x)] / v^{2}($ for $y=u / v)$
$e^{x} \Rightarrow e^{x} ; e^{f(x)} \Rightarrow \mathrm{f}^{\prime}(x) e^{f(x)} ; \ln x \Rightarrow 1 / x$
$\ln [\mathrm{f}(x)] \Rightarrow \mathrm{f}^{\prime}(x) / \mathrm{f}(x) ; \sin x \Rightarrow \cos x$
$\cos x \Rightarrow-\sin x ; \tan x \Rightarrow \sec ^{2} x$
$\operatorname{cosec} x \Rightarrow-\operatorname{cosec} x \cot x ; \sec x \Rightarrow \sec x \tan x$ $\cot x \Rightarrow-\operatorname{cosec}^{2} x$
The formulae are given except for \sin and \cos and the first three lines of this box. Remember if differentiating something beginning with c add a minus. If it doesn't start with c , don't.

Prepared by Sam Davyson

 in June 2005.Also available in other formats.

