1	M Pi	ny two differences + explanation eg S lifetime lanetary nebula/Supernova /hite dwarf/neutron star or black hole	4	
2	(a) (b)(i) (ii) (iii)	$v = H_o r$, with terms identified use of Doppler equation correctly plotted: (-1 each error or omission, max 2) line of best fit through the origin $H_o = \text{gradient of graph}$ = 48 – 54 km s ⁻¹ Mpc ⁻¹	1 1 1 2 1 1	
3	(a) (b)(i) (ii)	collapse under gravity GPE → KE: temperature rises Temperature rises fusion reactions start primordial He – formed in big bang first stars would have contained virtually no elements heavie OR solar He abundance > primordial	3 1 or than He	
4	(a) (b)	Any two from: Newtonian gravity spherical universe, uniform $\rho_0 = 3 \times (1.6 \times 10^{-18})^2 / 8 \pi \times 6.67 \times 10^{-11}$ = 4.58 x 10 ⁻²⁷ (kg m ⁻³) $\rho_0 = 4.58 \times 10^{-27} / 1.7 \times 10^{-27}$ = 2.7 H atoms m ⁻³ open: $\rho < \rho_0$, will continue to expand forever, graph flat: $\rho = \rho_0$, will just continue to expand forever, graph closed: $\rho > \rho_0$, will expand and then contract back to a big cru	1 1 1 1 2 2	
5	b c i	$\Delta m = 1.000 - 0.993 = 0.007 \text{ kg}$ $\Delta E = mc^2$ = 0.007 x (3 x 10 ⁸) ² = 6.3 x 10 ¹ kg s ⁻¹ > . Rate of consumption = 3.9 x 10 ²⁰ J s ⁻¹ /6.3 x 10 ¹⁴ J kg ⁻¹ (ecf) = 6.2 x 10 ¹¹ kg s ⁻¹ 10% of 2 x 10 ³⁰ kg = 2 x 10 ²⁹ kg MS lifetime = 2 x 10 ²⁹ kg/6.2 x 10 ¹¹ kg s ⁻¹ = 3.2 x 10 ¹⁷ s (= 1 x 10 ¹⁰ y) (unit penalty -1) sun is 100% H at start of MS life/constant power output/temperature/other valid	-1 for incorrect ∆m ecf full marks for correct answer full marks for correct answer ecf no marks for answer only	1 1 1 1 1 1 1 1 1 1 1

Qu	estion	1	Expected Answers	Further Guidance	Mk
6	а	Г	Corresponds to T ≈ 3 K	allow 2.7-3 K	1
		l	Blackbody spectrum	1	1
		l	Uniform/isotropic		1
- 1		l	shows ripples	COBÉ result	
	b		Early universe very hot		
- 1	-	ŀ	radiation has origin in BB		
	-		matter and radiation in equilibrium	5 max	
			universe expands/cools	NB. Correct sequence	
[1		atoms form/matter and radiation decoupled/universe becomes transparent	1 of 3	5
			radiation has stretched with the universe	allow doppler shifted/red shifted	
	c	i	Homogeneous - the same everywhere, uniform	1 only if wrong way round	1
i	- (ĺ	Isotropic - looks the same in every direction		1
		ii	CMB is highly uniform (so the universe must be uniform too)		1
ļ			Total		[11]

-	(a)	T	Infinite universe	1	1
	1,,		Each line of sight ends on a star		1
			(Or shells argument)	2 for shells argument	
			so sky bright at night		1
			big bang model - finite universe	4 max for Olbers	1
			and expanding	or other valid point	1
			radiation from distant stars redshifted	2 max for Big Bang	1
	(b)	(i)	$H_0 = v/r = 21000/300$ = 70 km s ⁻¹ Mpc ⁻¹		1
		(ii)	70 km s ⁻¹ Mpc ⁻¹ = 70000/(3 x 10 ²²) s ⁻¹ T \approx 1/ H_0	Allow ecf from (i)	1
			$= \frac{1}{(2.3 \times 10^{-18})} = \frac{4.2 \times 10^{17} \text{ s}}{10^{-18}}$		1
		(iii)	Rate of expansion is non-uniform		1
	1		Because of gravity	Or other valid point	1
8	(a)	Γ	No experimental evidence	Allow unattainable	1
	(-/		Or unknown physics	energies	
	(b)		Matter/antimatter annihilation		1
	1	l	Mith alight asymptotic	Orwitte	4

8	3	(a)	No experimental evidence Or unknown physics	Allow unattainable energies	1
		(b)	Matter/antimatter annihilation With slight asymmetry	Or wtte	1
ŀ		(c)	Thermal equilibrium	Of Wile	1
			Highly uniform/homogeneous		1

9	(b)	(i)	Change in position/apparent motion	1
	` ′	, ,	when viewpoint is changed	1
	T	(ii)	Distance at which the radius of the Earth's orbit	1
		, ,	subtends an angle of 1 arcsec	1

10		(a)		description of CMB (~3 K, blackbody, unif	orm,		1
				universe much hotter in the past/has cool	ed		1
		i	I lubble law/expanding aniverses galaxy reasoning			Or valid alternative	
				Helium abundance			1
				He formed in hot BB			1
l		(b)	(i)	Collapse		Or other	1
				→ explosion		detail eg neutron star	. 1
						or Black hol	1
						formation	
			(ii)	Universe contains insufficient mass to ha	lt	Density <	1
			` `	expansion,		critical	1
			L	Expansion continues forever		density	1
			(iii)	Increase			
11	11 (a)		And s sky w becau (cons Hubb	infinite static universe could be bright at night use every line of sight ends on a star tant rate of) expansion of universe le law stated es zero size	Or other To 6 ma	argument x	·
				finite past	Or not sta	atic	6
(b)(i))	1 pc = 70 km	= 3×10^{16} m or 1 Mpc = 3×10^{22} m n s ⁻¹ Mpc ⁻¹ = $70 \times 1000/(10^6 \times 3 \times 10^{16})$ = 2.33×10^{-18} s ⁻¹			1 1 1
		ii)	T ≈ 1/	$H_0 = 1/2.33 \times 10^{-18} = 4.3 \times 10^{17} \text{ s}$			1
	(1	iii)	s = vt	= cT 10 ⁸ x 4.3 x 10 ¹⁷ = 1.3 x 10 ²⁶ m			1
(c)				m rate expansion	Or other		1 [13]

12 Any three from:

final stage of stellar evolution

low mass stars / correct reference to Chandrasekhar limit

High density Small/hot /faint

Fermi pressure prevents further collapse

3 max

13 a.	any 6 points from: 1. initial singularity 2. high temperature 3. emergence of weak/strong/electrostatic force 4. matter-antimatter imbalance 4. pair-production from radiation/matter-radiation interchange 5. formation of protons/hydrogen nuclei/quarks/leptons/electrons/ne 6. early stage helium nuclei formed 7. universe cools 8. recombination of electrons and protons	utrinos	i
	6 max:	6	
b.	open when $\Omega < 1$ / $\rho < \rho_0$ universe expands for all time	1 1	
	flat when $\Omega = 1 / \rho = \rho_0$ universe <u>just</u> expands for all time (owtte) special case if M1 mark not scored:	1	
	closed when $~\Omega >$ 1 $~/$ $\rho > \rho_0$ expansion eventually halts/ universe collapses/big crunch	1 1	
14	(a) uniform intensity detected in all directions/ isotropic	1	
15	(a) Any 5 from red shift data for galaxies (accept stars) calculate velocity from red shift galaxies/ stars receding from Earth distance data for galaxies/ stars velocity α distance / v/r = constant / v-r graph straight line universe began at a single point	1 1 1 1 1	
	 (b) Any two stars rotate around galactic centre star with velocity component towards Earth reference to motion/shape of galaxy or other valid points eg blue shift (c) H_o = 75/3x 10¹⁹ s⁻¹ 	1 1 1	
	$t \approx 1/2.5 \times 10^{-18}$ $t \approx 4 \times 10^{17} \text{ s}$	1	
	(d) critical density is that for flat universe density > p ₀ universe closed/contracts/big crunch density < p ₀ universe open/ expands forever any 2 from fate unknown because size/mass/density universe uncertain fate unknown because p ₀ / H ₀ not known	1 1 1 1 1 Total	15

16	a.	correct reference to 1 AU		1
		parallax of 1 arcsecond (marks can be gained on <u>labelled</u> diagram)		1
17	a.	Any 6 from Nuclear/hydrogen burning ends	1	
		Mass > Chandrasekhar limit	1	
		Expanding gas/planetary nebular/red giant	1	
		Gravitational collapse /ref. to burning He or higher metals	1	
		Correct ref. to (Fermi) <u>pressure/ radiation_pressure</u> (must have ref. to pressure or force from radiation.)	1	
		Neutron star (neutron by itself, not enough)	1	
		Correct reference to Schwarzschild radius/ allow mass> 3M/ allow ref. critical radius	1	
		Black Hole	1 .	6
	b.i.	Mass = $3.8 \times 10^{26} / (3 \times 10^8)^2$		1
		Mass = $4.2(2) \times 10^9 \text{ kg s}^{-1}$		1
	b.ii.	$3.8 \times 10^{26} = 10^{44} / \text{time}$		1
	-	time = $8.2(2) \times 10^9 \text{ y}$		1

Total 10

18	a.	Universe is isotropic/ same in all directions		1
		homogenous/ evenly distributed		1
	b.	Any 5 from Uniform intensity in all directions/ everywhere	1	
		Structure in background intensity/ripples	1	
		Produced when matter and radiation decoupled	1	
		Originally gamma radiation	1	
		(gamma) red-shifted to microwave/originally higher energy	1	
		Evidence that universe began with big bang.	1	
		Temperature corresponds to 2.7K / 3K / that predicted by big bang model	1	5
	C.	Any 2 from No experimental evidence/ no physical evidence State of matter unknown/ laws of physics unknown Energies unreproducible/ ref. to very high temperature	1 1 1	2
	\neg			Total 9
19	a.	Open: Universe expands for all time		1
		Flat: expands to a limit (but never reaches it)		1
		Closed: Universe contracts/ collapses back		1
		reference to role of gravity/ critical density		1
		Marks for a. can be gained on <u>labelled</u> diagram.		
	b.	$H_0^2 = 1x10^{-26} \times 8 \times \pi \times 6.67 \times 10^{-11} / 3$		1
		$H_0 = 2.36 \times 10^{-18} \text{ s}^{-1}$		1
				Total 6

Total 6

20	(a)	(i) energies/temperatures irreproducible on Earth / laws of	£13	
	_	Physics break down (ii)temperature decreases	[1] [1]	
		universe expanding/work done against attractive forces/ energy converted to mass	[1]	
		converted to mass	[1]	
		(iii)any 3 from protons and electrons separate initially	[1]	
		matter-radiation equilibrium/charge prevents passage		
		of em waves proton-electron recombination /formation of atoms	[1] [1]	
		gamma/ em waves no longer absorbed	[1]	
	(b)	any 5 from:	[3]	
	(0)	star-light shows red shift	[1]	
		galaxies (stars) receding from Earth recessional velocity proportional to distance	[1] [1]	
		cosmological microwave background radiation (CMBR)	[1]	
		uniform intensity in all directions small ripple	[1] [1]	
		(black body temperature) 2.7 K (3K)	[1]	
		High ratio of helium to hydrogen Indicates very high temperatures existed	[1] [1]	
		ratio too high to originate from stellar fusion	[1]	[5]
			[total 11]	
21		any 4 from:		
		end of H burning/red giant/supergiant	[1]	
		onset of He fusion/fusion of heavier nuclei gravitational collapse of core	[1] [1]	
		supernova explosion/ star explodes	[1]	
		suitable mass limit (chanderasekha limit 1.4M)	[1]	
		supported against gavity by neutron gas pressure/ref to Fermi pressure	[1]	
		internal structure protons and electrons combined/ very	[1]	
		thin atmosphere/ metallic crust	[1]	[4]

22	(a)	isotropic homogenous	[1] [1]
	(b)	(i) $H_0 = 75 / 3.1 \times 10^{19}$ $t_0 = 1 / H_0 = 4.13 \times 10^{17} \text{ s}$ $t_0 = 4.13 \times 10^{17} \text{ s} / 365 \times 24 \times 3600 = 1.3 \times 10^{10} \text{y}$	[1] [1] [1]
		[1] [1] [1] [2]	
		(iii)curve: passes through P curves over and back to time axis iv)Universe not so old (no ecf from (iii)/ Universe will end	[1] [1]
		in big crunch(no ecf from iii) / universe has finite lifetime	[1] [total 10]
23	•	change in frequency or wavelength from relative motion of source and/or observer	1
24		a) any 6 from very high temperature quarks/electrons/ positrons/ neutrinos formed temperature decreases/ inflation strong nuclear force takes effect protons/ neutrons/ pions formed annihilation/ excess matter to anti-matter synthesis of helium nuclei hydrogen atoms form 25% of mass is helium	1 1 1 1 1 1 1 1

	b)	EITHER uniform intensity/isotropic from era when matter and radiation strongly coupled 1			1
		OR temperature of 3K agrees with expected cooling			
	c)	i)	E = hf / E = hc/ λ E = 6.63 x 10 ⁻³⁴ x 3 x 10 ⁸ / 1.1 x 10 ⁻³		1 1
	c)	ii)	E = mc^2 E = 1.7 x 10^{-27} x (3 x 10^8) ²		1
	c)	iii)	$(1.53 \times 10^{-10} / 10^{9} \times 1.8 \times 10^{-22})$ 8.5 x 10^{2} (ecf from c)i) and c)ii))		0 1
	c)	iv)	Any 2 from shorter photon wavelength / universe smaller photon energy greater ratio becomes smaller.	1	1 1 2
25		a.	(apparent) change in position of a star due to change in position of Earth		1
		b.i	distance = 1/ parallax angle distance = 1/ 0.314 = 3.2 pc		1
		b.i	i $3.2 \times 3.1 \times 10^{16} = 9.9 \times 10^{16} \mathrm{m}$		1
		c.i	all points plotted correctly		1
		c.i	i. best straight line drawn		1
		c.i	ii. 1. gradient = 2.1 x 10 ⁻¹⁸ unit: sec ⁻¹ 2. 1/ gradient = 4.8 x 10 ¹⁷ (s) ECF		1 1 1
		c.i	v. gradient is Hubble's constant 1/ gradient is approximate age of Universe		1
		d.	galaxies (stars) are more distant than that in part a. parallax too small for accurate measurement		1

26	a.	isotropic: appears the same in every direction homogenous: (on a large scale) the same number of galaxies in any given volume / owtte			1
	b.i.	volume = mass / density = $2 \times 10^{30} / 3.3 \times 10^{23}$ volume = $6.1 \times 10^6 \text{ pc}^3$			1
	b.ii.	any 3 from density less than critical density open universe universe will expand forever critical density; universe expands to limit	1 1 1		
		allow energy argument: any 3 from required pe is now lessened/ ke of galaxies > Δpe open universe universe will expand forever idea of escape velocity	1 1 1		3 I 7
27		Any 6 from light from galaxies is red shifted speed of recession proportional to distance universe is expanding	1 1 1		
		cosmic microwave background radiation(CMBR) peak at 2.7K uniform intensity in all directions/ very small ripple	1 1 1		
		ratio of helium to hydrogen higher than can be accounted for by stellar fusion alone created during initial high temperatures	1 1 1	6	
		H = 1/t Conversion process (alternative conversions allowed) Correct answer (215 km s ⁻¹ Mpc ⁻¹) (H = 7 x 10 ⁻¹⁸ s ⁻¹ scores 2 max.)	1 1 1	3	
	(ii)	minimum time so H is a maximum	1		
		velocity from red shift data/ distance from Cepheid variable	v = 1 1	Нхг	1
		ref. to change of acceleration with increasing size of Universe	1	3	
			Tota	al 13	

28	(a)	occurs at end of main sequence/ when hydrogen burning ceases	1	
		core compresses/ increase in outward pressure/		
		star expands/ planetary nebular/ density decreases lower surface temperature/ increased luminosity	1	3
		lower surface temperature/ increased furnifiosity	'	3
29	(a)	any 5 from		
		very high temperature expansion/ inflation	1	
		electrons formed	1	
		leptons/ positrons/ neutrinos/ quarks formed	1	
		reference to forces separating protons/ neutrons/ hadrons formed	1	
		helium nuclei formed	1	
		extra detail	1	5
	(b)	(i) all points correct		1
		(ii) smooth curve each side		1
		continuous curve at peak		1
		correct frequency read from graph for max intensity		1
		(iii) $3 \times 10^8 = \lambda_p \times \text{(frequency from b.ii)}$		1
		calculation of λ _p		1
		(iv) correct calculation of T (ecf from b.ii)		1
	(c)	any 2 from		
		gamma radiation from Big Bang red shifted to microwave	1	
		T = 2.7K (3K) predicted by big bang theory/		
		measurements provide evidence for big bang theory	1	
		measurements contradicted steady state theory	1	2
				total 14
30	(a)	any 3 from		
	. 7	light from galaxies (accept stars) shows red-shift	1	
		galaxies (stars) moving away/ Universe expanding red-shift proportional to distance (from Earth)/ v=H x d	1 1	
		distances to (Cepeid variable) stars measured	1	3
	(b)	expansion may continue forever (open universe)		
	(12)	universe may collapse back (closed universe)		
		expansion may continue to a limit (flat universe)	4	
		Any 2 of these alternatives Third alternative	1	
		Consistently correct reference to critical density		
		compared to density of open, closed or flat Universe	1	3
				total 6
	0	(1 parsec) = 3 x 10 ¹⁶ m		4
31	a.	(T parsec) = 3 x 10 ° m (mass of Sun) = 2 x 10 ³⁰ kg		1 1

_	1

32	a.i	mass loss = $0.02759 \times 1.66 \times 10^{-27} = 0.0458 \times 10^{-27}$ kg E = Δmc^2 E = $0.0458 \times 10^{-27} \times (3 \times 10^8)^2 = 4.12 \times 10^{-12}$ J		1 1 1
	a.ii.	4: number of protons and neutrons/ mass number/ nucleon number. 2: number of protons/ proton number		1
	b.	greater coulomb repulsion between He nuclei/ He nuclei have greater charge		1
	C.	Any 3 from Hydrogen fuel exhausted Core contracts/ onset of He burning/ shell H burning Outer layers expand and cool absolute magnitude decreases/ more negative, or (larger surface area) increases luminosity	1 1 1	3
	d.	any 3 from very high temperature very high density much smaller than a star gravity balanced by electron degeneracy pressure	1 1 1 1 total	3 11
33	a.	change in frequency/wavelength of radiation/ sound due to velocity of source/observer/both		1
b.iii	gal	axies are receding		1
b.iv	Δλ	= 86.1 nm		1
b.v		$/\lambda = v/c$ or $86.1 / 410 = v / 3x 10^8$: $6.3 \times 10^7 \text{ ms}^{-1}$		1
C.		points plotted correctly st straight line drawn		1 1
d.	age	edient = 2.6 x 10 ⁻¹⁸ or 1/ gradient = 3.9 x 10 ¹⁷ e of Universe = 1/ gradient = 3.9 x 10 ¹⁷ it : seconds	tota	1 1 1 114

34	a.	homogeneous isotropic	1 1
C.	all nig	opose the universe is infinite lines of sight end on a star ht sky should be bright/ not dark her	1 1 1
	age	e of universe is finite light not yet had time to reach earth	1 1
	ex	pansion of space causes cosmological redshift ergy of radiation is decreased	1 1
	mo	ovement of galaxies causes redshift ergy of radiation is decreased	1 1 2 total 12
35	a.	any 5 from singularity/ very high temperature matter and antimatter produced excess matter over antimatter forces freeze out electrons/positrons/neutrinos formed protons and neutrons formed helium nuclei formed approx 25% nuclei are helium hydrogen and helium atoms formed	1 1 1 1 1 1 1 1 1
	b	any 2 from reference to mass increase with velocity cannot reproduce energies high temperatures result in high KE/ high velocity	1 1 1 2
	c.i.	any 2 from uniform intensity black body temperature 2.7 (accept 3) K left over from gamma radiation which passed through universe after recombination expansion of Universe/space increased gamma wavelength to microwave	1 1 1 2
	c.ii.	different densities/ show places where galaxies forming	1
	d.	$v = H_0 r$ $KE = \frac{1}{2} M v^2 = \frac{1}{2} M H_0^2 r^2$	1 1
	e.	critical density: expansion stops after infinite time open universe/ universe will expand forever, if density $<\rho_0$ closed universe/ universe contracts, if density $>\rho_0$	1 1 1 total 15

36	(a) fusion of hydrogen <u>nuclei</u> / protons helium nuclei formed		1
	mass loss produces energy / E = mc ² (pp equations give first 2 marks)		1
(c)	luminosity increases because surface area increases surface temperature decreases because work done expanding owtte		1
	expanding owite		
(d)			1
	1.49 (1.5) x 10 ¹¹ metres		1
(f)	 any 6 from the following Hydrogen burning in core has ceased/ Hydrogen is used up. Planetary nebula formed/core collapses Helium burning takes place/shell burning reference to further expansion or contraction (Core) mass greater than 2.5 – 3.0 M₀ Supernova explosion occurs Formation of black hole Other relevant point eg formation of heavier Elements/reference to Schwartzchild radius 	1	1 1 1 1 1 1 1
37	(a) (i) $\Delta \lambda / \lambda = v/c$ (656.3 651.0) / 656.3 = $v/3.0 \times 10^8$		1

 $(656.3 - 651.0) / 656.3 = v / 3.0 \times 10^{6}$ v = 2.42 x 10⁶ m s⁻¹ 1 (ii) the star is approaching Earth (ora) (iii) any 5 from measurements made of Δλ for many galaxies (stars) measured distance to many galaxies (stars) light from galaxies was red-shifted calculated velocity of galaxies (stars) showed that $v = H_0 r (v \alpha r)$ H₀ is Hubble's constant Universe is expanding 1 Age of Universe is 1 / H₀ 1 Other detail

	(b) Either any 2 from uniform intensity in all directions very small ripples in intensity equivalent black body temperature of 2.7K (3K)		1	1 1 2	
		Acc Gar rec Wa	2 from cept argument based upon expansion of space mma waves move through Universe after ombination velength increases as Universe/space expands livalent black body temperature of 2.7K (3K)	1	1 1 2
		con	clude that Universe began with big bang		1
				Tot	al 12
38		a.i.	parallax angle subtended is 1 arcsecond when arc length is 1 AU (owtte)		1 1
39		a.	Change in wavelength/frequency due to motion of source/observer/both		1 1
		b.i.	$\Delta\lambda$ = λ x (v/c) galaxy E is moving faster and so light undergoes greater change in wavelength.		1
		b.ii.	points plotted correctly best straight line drawn		1 1
		b.iii.	equate H with gradient calculate H = 50 (ecf from graph) unit = km s ⁻¹ Mpc ⁻¹		1 1 1
		C.	Any two from gravity causes galaxies to decelerate (owtte) ratio of v/r is becoming smaller recent evidence shows distant galaxies accelerating away	1 1 1	2
		d.	Cosmic Background Microwave Radiation Uniform intensity temperature approximately 3K	1 1 1	
			or Unexpectedly high abundance of helium Could not have come from stellar helium burning alone Helium created in the earliest moments of big bang	1 1 1	3
				total	14

40

40	a.	uniform intensity detected in all directions/ isotropic/ black body spectrum at 2.7K (3K)		1
	b.	Hydrogen and helium in early stars and Sun	. 1	1
		Sun has greater proportion of helium than early stars H changed to He by fusion in Sun	·/	1
		Virtually no higher elements in first stars ora (accept specific examples up to iron)		1
41		$v \alpha r / v = H_0 x r$		1
	a.	V α I / V = Π ₀ X I		
	Any 4	4 from		
	b.i	infinite universe static universe		1 1
		uniformly populated with stars/ cosmological principle		1
		all lines of sight end on a star		1
		night sky should be bright / not dark		1 4
	b.ii	either		1
		Hubble's law implies universe is expanding Wavelength of light stretched by expansion/		1
		red shift light from distant galaxies red-shifted from visible		1
		to IR		1
		or Hubble implies universe started at particular time		1
		finite age of universe/ age = 1/H ₀		1
		light from distant stars not had time to reach Earth/		1
		Time number of stars		3
			Total:	8

a.	Any 5 from very high temperature leptons/quarks/electrons/positrons/neutrinos formed temperature decreases/ inflation strong nuclear force takes effect/ forces freeze out protons/neutrons/pions formed matter and antimatter formed/annihilation/ excess matter over antimatter synthesis of helium nuclei hydrogen atoms form 25% mass is helium gamma radiation/ recombination/ universe becomes transparent	1 1 1 1 1 1 1
		5
b.	isotropic: appears the same in every direction homogeneous: (on a large scale) the same number of galaxies in any given volume	1
c.i	volume = mass/ density = $2 \times 10^{30} / 3.8 \times 10^{23}$ volume = $5.3 \times 10^6 \text{ pc}^3$	1
c.ii	density less than critical density open universe/ universe expands forever	1
	density greater than critical density universe collapses back/ closed universe	1
	universe expands to limit/ flat universe if density = critical density	1

Total: 14