50	(a)(i)	 r: radius of nucleus / nuclei r₀: radius of nucleon / proton / neutron / hydrogen nucleus; A: number of nucleons / (protons + neutrons) / mass number; 	1	[2]
	(ii)	line curves in correct sense from origin but doesn't become horizontal; any part drawn with ruler loses this mark	1	[1]
	(b)(i)	$r = r_0 A^{1/3} = 1.41 \times 10^{-15} \times 56^{1/3}$ = 5.39 x 10 ⁻¹⁵ m	1	[2]
	(ii)	$m = V\rho$ allow $m = \frac{4}{3}\pi r^3 \rho$ = $\frac{4}{3}\pi (5.39 \times 10^{-15})^3 \times 1.44 \times 10^{17}$ (= 9.45 x 10 ⁻²⁶ kg)	1	[2]
	(c)(i)	protons: 26, neutrons: 30;	1	[1]
	(ii)	mass = $26 \times 1.673 \times 10^{-27} + 30 \times 1.675 \times 10^{-27} = 9.37(48) \times 10^{-26} \text{ kg}$	1	[1]
		allow ecf from (c)(i) allow 2 sf		
	(d)	difference in mass = $0.08 \times 10^{-26} = 8 \times 10^{-28}$ (kg) accept $7 - 10 \times 10^{-28}$ (kg) wrong unit $0/1$ allow ecf from (b)(ii) and (c)(ii)	1	[1]
	(e)	$E = (\Delta)mc^2$ = $8 \times 10^{-28} \times (3 \times 10^8)^2 = 7.2 \cdot 10^{-11} \text{ J}$ accept $6.3 - 9.0 \times 10^{-11} \text{ J}$ allow ecf from (d) allow 1 sf	1	[2]
				12

51 (a)	similar mass means large momentum transfer (in collision); hence fewer collisions are needed; neutron colliding with heavy nucleus bounces off with similar speed / k.e. scores 1/2 max. neutron colliding with similar mass nucleus transfers large k.e. / speed scores 1/2 max.	1 1	[2]
(b)(i)	$^{236}{_{92}\text{U}} -> ^{110}{_{45}\text{Rh}} + ^{121}{_{47}\text{Ag}} + 5^{1}{_0}\text{n}$ allow $^{235}{_{92}\text{U}} + ^{1}{_0}\text{n} -> ^{110}{_{45}\text{Rh}} + ^{121}{_{47}\text{Ag}} + 5^{1}{_0}\text{n}$ no neutrons $0/2$, incorrect number of neutrons $1/2$ $5^{1}{_0}\text{N}$ gets $1/2$ max. $^{5}{_0}\text{n}$ gets $0/2$ if $^{1}{_0}$ missing from neutron symbol, $1/2$ max. $^{236}{_{92}\text{U}} + ^{1}{_0}\text{n} -> ^{110}{_{45}\text{Rh}} + ^{121}{_{47}\text{Ag}} + 6^{1}{_0}\text{n}$ gets $1/2$	2	[2]
(ii)	plots 5 or 6 points correctly 4 points plotted correctly gets 1/2 allow points using (relative yield)/2 3 or less points correct gets 0/2	2	[2]
(iii)	line passes through all 6 points; graph is sensibly symmetrical; uses only ruler allow 1/2 max. for symmetry if no points plotted allow 1/4 max. for parts (ii) and (iii)	1 1	[2]
(iv)	accept 0.01% □ yield □ 0.02% allow ecf for minimum greater than 0.02%	1	[1]
(c)(i)	$^{121}_{47}$ Ag -> $^{121}_{48}$ X + $^{0}_{-1}$ β / $^{0}_{-1}$ e + $^{(0)}_{(0)}$ ν-bar; omits ν-bar, 1/2 max. omits $^{0}_{-1}$ from β symbol, 1/2 max. if A or Z number incorrect, -1 each error	2	[2]
(ii)	protons: +1 neutrons: -1	1	[1] 12

2 a)	neutron is udd/proton is uud; quarks are: up down strange top bottom charm; either up/u has $Q = (+)2/3$, $B = (+)1/3$; or down/d has $Q = -1/3$, $B = (+)1/3$;	1 1 1	
	quarks are fundamental particles; (1) for every quark there is an antiquark; (1) antiquarks have opposite values of <i>Q</i> , <i>B</i> and <i>S</i> (compared to quark) (1) quarks are held together by strong force / gluons (1) <i>Q</i> , <i>B</i> and <i>S</i> are conserved in (quark) reactions (1) any 2	2	[5]
(b)(i)	charge: 1 + (-1) -> 0 + 0 + (-1) + X_Q so X_Q = (+)1 baryon number: 1 + 0 -> 1 + 0 + 0 + X_B so X_B = 0 strangeness: 0 + 0 -> 0 + 0 + 0 + X_S so X_S = 0 working need not be shown has NO strangeness gets $0/1$	1 1 1	[3]
(ii)	has $\overline{\text{NO}}$ baryon number gets 0/1 $\pi^+ \text{ particle / antiparticle to } \pi^- \text{/ meson with quark composition of (up + not-down)}$ do not allow positron	1	[1]

53 a)	(consists of) positive ions / nuclei and electrons; not just electrons stripped from nuclei	1	[1]
(b)	ions / nuclei / electrons are charged; moving charge / ions / electrons experience force in magnetic field; ions / nuclei / electrons spiral along field lines;	1 1 1	[3]
(c)(i)	calculates b.e. per <i>nucleus</i> : 1.11 x 2 (= 2.22) 2.57 x 3 (= 7.71) both expressions so energy released = 7.71 - 2 x 2.22 (= 3.27 MeV) = 3.27 x 10 ⁶ x 1.6 x 10 ⁻¹⁹ = 5.2(3) x 10 ⁻¹³ J omits multiplication by 2 and 3, 1/3 max.	1 1 1	[3]
(ii)	reaction 2 generates more energy (than reaction 1);	1	[1]
(d)	initial mtm. = final mtm. so $0 = m_{\rm H} v_{\rm H} + m_{\rm n} v_{\rm n}$ $0 = (4 m_{\rm n}) v_{\rm H} + m_{\rm n} v_{\rm n}$ so $v_{\rm n} = 4 v_{\rm H}$ k.e. of $^4{}_2{\rm He} = \frac{1}{2} m_{\rm H} v_{\rm H}^2$ k.e. equation applied (to n or He) $= \frac{1}{2} (4 m_{\rm n}) v_{\rm H}^2 = 2 m_{\rm n} v_{\rm H}^2$ k.e. of $^1{}_0{\rm n} = \frac{1}{2} m_{\rm n} v_{\rm n}^2 = \frac{1}{2} m_{\rm n} (4 v_{\rm H})^2 = 8 m_{\rm n} v_{\rm H}^2$ alg. either k.e. of $^1{}_0{\rm n} = 4 {\rm x}$ (k.e. of He) or $^1{}_0{\rm n}$ has 80% of total energy	1 1 1 1 1	[5]
54 a)	Np graph: graph has exponential shape / there is exponential decay of Np nuclei / number (of Np nuclei) is halved in 2.3 days / constant time / in its half life; Pu graph: sum of Pu + Np nuclei = 3.0 x 10 ²⁰ at all times; (1) either because one Np nucleus decays to one Pu nucleus or rate of decay of Np and formation of Pu are equal; (1) and half life of Pu >> / much bigger than half life of Np; (1)	1	
	any 2	2	[3]

(1	b)	time required = time for Np nucleus to fall to 0.30 x 10 ²⁰ ;	1	
		then either $N = N_0 (\frac{1}{2})^{tT/2}$ so $N/N_0 = (\frac{1}{2})^{tT/2}$ $\lg(N/N_0) = t/T_{\frac{1}{2}}(\lg 0.5)$ $\lg (0.1) = t/2.36 \lg (0.5)$ t = 7.8 days	1 1 1	
		or uses $N = N_0 e^{-\lambda t}$ where $\lambda = \ln 2/2.36 (= 0.294 \text{day}^{-1})$ (1) so $0.1 = e^{-0.294 t}$ (1) $\ln (0.1) = -0.294 t$ $t = 7.8 \text{days}$ (1)		
		or $\lambda = \ln 2/(2.36 \times 24 \times 3600) = 3.41 \times 10^{-6} \text{ s}^{-1}$ $0.1 = e^{-3.41 \times 10 \exp(-6) t} \qquad \ln (0.1) = -3.41 \times 10^{-6} t$ $t = 6.76 \times 10^{5} \text{ s} = 6.76 \times 10^{5}/(24 \times 3600) = 7.8 \text{ days}$		[4]
		calculates time for Np to fall to 2.7×10^{20} / Pu to rise to $0.3 \times 10^{20} = 0.36$ day gets $0.1.1.1 = 3/4$		
		uses $T_{1/2}$ for plutonium can get 2/4 max.		
		attempts to use repeated halving of N can get 2/4 max. if using 0.3 (not 2.7)		_
				7
55				
		i 212; β ii 208; α	2	4
	b	range/penetration/absorption experiment: α place detector very close/ 2cm from source; measure count rate, use paper screen or move back to 10 cm or more; contrast to background count level/ other emissions from same source β place detector eg 10 cm from source; measure count rate, add thin sheets of Al until count drops to very low or almost constant value	1 1 1 1	
		aliter deflection experiment: needs vacuum for α experiment; source for radiation passes through region of E- or B- field; deflection of particles detected by detector to distinguish emissions; detection method max 4 marks	1 1 1	4
	c i	i $A = \lambda N$; = $\lambda m N_A/M$; = 0.0115 x6.02 x 10 ²³ x 1 x10 ⁻⁹ /212 = 3.27 x 10 ¹⁰ min ⁻¹	3	
		ii $T_{1/2} = 0.693/λ = 60.3$ (min) iii Curve passing through (0,32) (60, 16) (120,8) ecfs from (i) &	1 1	5
		(ii) Total		13

									_
	5	6	(a)	(i)	general shape: crosses axis, reaches turning point; then hits distance axis (not asymptotic);		1	[2]	
				(ii)	marks sections as 'repulsive' and 'attractive', consistent with graph;		1	[1]	
				(iii)	marks crossing point 'X'		1	[1]	
									_
			(b)		at smaller separation / to left of X, force is repulsive; at larger separation / to right of X, force is attractive; either so force always returns neutrons to original separation / is a restoring force or		1		
					at equilibrium separation strong force is zero;		1	[3]	
			(c)		acts only on nearest neighbour / when nuclei are 1 diameter apart; either so force holding nucleons/ neutrons together independent of size of nucleus or reference to b so distance apart (of nucleons) must be constant; so density of nucleus is independent of size;		1 1	[3]	
	! ,	\overline{T}					<u> </u>	10	
57			(a)		23992U -> 23993Np + 0-1β/0-1e + ν allow 23892U + 10n on LHS	1			
					23993Np -> 23994Pu + 0-1β/0-1e + + ν	1	[2]		
					allow neutrino instead of antineutrino omits neutrino altogether - gets 1/2				
			(b)		straight line starts from zero and reaches 1.08 x 1013 at t = 6.0 x 105 s or equivalent	1	[1]	l	
			(c)	(i)	rate of decay increases with time; because rate of decay increases with / is proportional to number of nuclei;	1	[2]		
				(ii)	(eventually) rate of decay (of ²³⁹ ₉₃ Np) = rate of formation	1	[1	,	
				(iii)	$dN/dt = (-)\lambda N$ equation $\lambda = 0.693 / T_{25}$	1			
					so $N = (dN/dt) / \lambda = 1.8 \times 10^7 / (0.693 / [2.04 \times 10^5])$ subs. = 5.3×10^{12} ans.	1			
					calculation of λ gets 1/3	1	[3]		
				(iv)	correctly curved from zero to (5.3 x 10 ¹²) or less	1	F41		
				(iv)		_	[1]		
			(d)	(i)	24 000 year remembers = 24000 x 3.16 x 10 ⁷ = 7.58 x 10 ¹¹ s answer	1	[2]	l	
				(ii)	starts from origin with zero gradient; approaches line parallel with Np production line, X;	1	[2]	,	
							14		
	١								

58	(a)	(i)	to come to rest simultaneously, total mtm. = 0 or AW (but initial mtm. not zero)	1	[1]
		(ii)	initial mtm. = $3 mu - 2 mu = mu$ when closest, mtm. = $(3m + 2m)v$ so $5mv = mu$ (and $v = u/5$)	1	[2]
	(b)	(i)	initial k.e. = final k.e. + (gain of) p.e.	1	[1]
		(ii)	k.e. = $\frac{1}{2}mv^2$ total k.e. = $\frac{1}{2} \times 3 m u^2 + \frac{1}{2} \times 2 m u^2$ (= $2.5 m u^2$) = $2.5 \times 1.67 \times 10^{-27} u^2$ (= $4.18 \times 10^{-27} u^2$) allow $m = 1.66 \times 10^{-27}$ kg for full credit	1 1 1	[3
		(iii)	gain of p.e. = initial k.e final k.e.		
			$\frac{(1.6 \times 10^{-19})^2}{(4\pi \times 8.85 \times 10^{-12} \times 1.5 \times 10^{-15})} = 4.18 \times 10^{-27} u^2 - 4.18 \times 10^{-27} (u/5)^2$	2	
			$1.53 \times 10^{-13} = 4.01 \times 10^{-27} u^2$ algebra	1	
			$u = 6.18 \times 10^6 \mathrm{m s^{-1}}$	1	[4
			omits - $4.18 \times 10^{-27} (u/5)^2$, gets $u = 6.06 \times 10^6 \mathrm{m s^{-1}}$: $1/2, 1, 1 = 3/4$		11
59	(a)		$^{236}_{92}$ U -> $^{100}_{40}$ Zr + $^{131}_{52}$ Te + 5^{1}_{0} n	1	[1]
	(b)	(i)	nucleon number: no change proton number: increases by 1	1	[1]
		(ii)	nucleon number: 100 proton number: 44	1	[1]
		(iii)	5 correct points 4 correct arrows	1	[2]
		(iv)	straight line through / close to 56 / 44 of 1 ≤ gradient < 2 if curved, correct sense	1	[1]
	(c)	(i)	reactant mass = 99.895 808 u product mass = 99.891 679 + 0.000 549 (= 99.892 228 u) mass defect = 0.003 580 u	1	[2]
		(ii)	$\Delta m = 0.003580 \times 1.66 \times 10^{-27} $ (= 5.943 x 10 ⁻³⁰ kg) $E = (\Delta) m c^2$ = 5.943 x 10 ⁻³⁰ x (3.0 x 10 ⁸) ² (= 5.35 x 10 ⁻¹³ J)	1	[2]
		(iii)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2	[2]
					12

а		A: the number of (undecayed) nuclei which decay per second/rate of		
		decay of <u>nuclei</u>	1	
		λ: the probability of a given nucleus decaying in the next second or		
		in unit time/the (decay) constant relates the activity to the number of	1	
		undecayed nuclei		
		N: the number of undecayed nuclei/nuclei of the original nuclide	1	3
		(remaining)		
b	i	90 and 234	1	
	ii	$2 \times 10^{-6} \times 7.0 \times 10^{6} = 14 \text{ (kg)}$	1	
	iii	N = (m/M) N _A = 14 x 10 ³ x 6 x 10 ²³ /238 (= 3.5 x 10 ²⁵)	1	
	iv	$\lambda = 0.69/T = 0.69/4.5 \times 10^9 \times 3.2 \times 10^7 = 4.8 \times 10^{-18} \text{ (s}^{-1})$	1	
		$A = \lambda N = 4.9 \times 10^{-18} \times 3.5 \times 10^{25} = 1.7 \times 10^{8}$; s ⁻¹ or Bq	2	6
С		change of state/water changes to steam; requiring latent heat;	2	
		for heating steam, calculation requires a different specific heat	1	
		capacity;	1	3
		energy/heat losses to surroundings not included/AW max 3		
		marks		
		give 1 mark for formula only gives energy needed to heat water		
		to 100°C		
		Total		12

61	a) (i)	gradient = $2.7 \times 10^{45} \text{ (m}^3\text{)}$ ans. (1); accept values between 2.7 and 2.8×10^{45}	1	[1]
	(ii)	quotes $r^3 = A r_0^3$ or $r = A^{1/3} r_0$ deduces $r_0 = \sqrt[3]{(\text{gradient})}$ calculates $r_0 = 1.4 \times 10^{-15} \text{m}$ allow 1.39 to 1.41 $\times 10^{-15} \text{m}$ if values from graph used, max 2/3 answer without working scores 2/3 allow ecf from (i)	1 1 1	[3]
	(b)	$\rho = m/V or \rho = m/[(^4/_3)\pi r^3] \qquad \text{equation}$ $either = \frac{12 \times 1.67 \times 10^{-27}}{12 \times ^4/_3 \pi (1.4 \times 10^{-15})^3} \qquad \text{subs.}$ $= 1.45 \times 10^{17} \text{ kg m}^{-3} \qquad \text{ans.}$ allow ecf for r_0 from (a)(ii) omission of one 12 factor can score max 2/3 omission of conversion factor from u to kg can score max 1/3 or reads off $12r^3$ where $A = 12$ from graph then $\rho = \frac{12 \times 1.67 \times 10^{-27}}{^4/_3 \pi \times 3.28 \times 10^{-44}} \qquad (1)$ $= 1.46 \times 10^{17} \text{ kg m}^{-3} \qquad (1)$	1 1	[3]
	(c)(i)	ratio = $\frac{1.45 \times 10^{17}}{3530}$ = 4.12×10^{13}	1	[1]
	(ii)	mass of nucleus is about the same as mass of atom either most of atom is empty space or AW or nucleus occupies only (very) small part of volume of atom; or link betwen mass and volume e.g. same mass in larger / smaller volume;	1	[2] 10
62	(a)(i)	(neutrons) having energies comparable with thermal energies / slow moving / low kinetic energy / energy in range 6 - 100 eV / energy similar to (energy of) atoms of surroundings;	1	[1]
	(ii)	either thermal neutrons will be captured / absorbed (by U-235 nuclei) or higher energy neutrons do not get absorbed;	1	[1]

(b)(i)	3 points plotted; any point incorrect loses this mark	1	
(ii)	curve through 3 points and heads down towards zero; line peaks between Br and origin;	1	[3]
(iii)	BE per <i>nucleus</i> of ²³⁵ ₉₂ U = 7.60 x 235 (= 1786 MeV) BE of products = 8.20 x 146 + 8.60 x 87 both lines	1	
	so energy released = (1197 + 748) - 1786	1	[3]
	omits multiplication by nucleon number to get 9.2 MeV gets 0,1,0 = 1	•	[0]
	graph: 2 humps; sensibly symmetrical with minimum between 110 and 125;	1	[2]
(iv)	on Fig. 2.1 two labels F near to Br and La;	1	
(v)	two regions shaded / marked / ringed around Br and La with gap between;	1	
(*)	labels etc. on Fig. 2.2 scores zero		[2]
(c)(i)	speed after collision = 0.93 x speed before collision	,	
	= 2.48 x 10 ³ m s ⁻¹	1	[2]
(ii)	this is collision is head-on but other collisions may not be;	1	[1]
			15
a)	confines / pulls together plasma / nuclei / ions / nucleons / protons; (1) so increases density/ concentration / number per unit volume; (1) and increases frequency / number of collisions among nuclei; (1) gravitational attraction heats plasma / gravitational p.e. changed to heat; (1) any 3	3	[3]
(b)	either area is potential / stored energy / work done / energy to overcome coulomb barrier	1	
	it is (minimum) energy needed for fusion;	1	[2]
(c)	$E_{\rm k} = 2.07 \times 10^{-23} \times 15 \times 10^6 \ (= 3.1 \times 10^{-16} \text{J})$ so for two nuclei, $E_{\rm k} = 6.2 \times 10^{-16} \text{J}$	1	[1]
	(ii) (iv) (v) (c)(i) (ii)	(ii) curve through 3 points and heads down towards zero; line peaks between Br and origin; BE per nucleus of ²³⁵ ₉₂ U = 7.60 x 235 (= 1786 MeV) BE of products = 8.20 x 146 + 8.60 x 87 both lines (= 1197 + 748 MeV) so energy released = (1197 + 748 MeV) so energy released = (1197 + 748) - 1786	(iii) curve through 3 points and heads down towards zero; line peaks between Br and origin; (iii) BE per nucleus of ²³⁵ s ₂ U = 7.60 x 235 (= 1786 MeV) BE of products = 8.20 x 146 + 8.60 x 87 both lines (= 1197 + 748 MeV) so energy released = (1197 + 748 MeV) so energy released = (1197 + 748 MeV) so energy released = 159 MeV omits multiplication by nucleon number to get 9.2 MeV gets 0,1,0 = 1 graph: 2 humps; sensibly symmetrical with minimum between 110 and 125; 1 (iv) on Fig. 2.1 two labels F near to Br and La; 1 two regions shaded / marked / ringed around Br and La with gap between; 1 labels etc. on Fig. 2.2 scores zero (c)(i) speed after collision = 0.93 x speed before collision so after 120 collisions, final speed = (0.93) ¹²⁰ x speed before collision = 2.48 x 10 ³ m s ⁻¹ 1 (iii) this is collision is head-on but other collisions may not be; 1 a) confines / pulls together plasma / nuclei / ions / nucleons / protons; (1) so increases density/ concentration / number per unit volume; (1) and increases frequency / number of collisions among nuclei; (1) gravitational attraction heats plasma / gravitational p.e. changed to heat; (1) any 3 (b) either area is potential / stored energy / work done / energy to overcome coulomb barrier or minimum k.e. at infinity or AW; it is (minimum) energy needed for fusion; 1

	(d)	combined (mean) k.e. << required p.e. / energy needed for fusion; (1) aware there is a range / spread of (nuclear) k.e.s; (1) (very) small proportion of $^{1}_{1}$ H nuclei have enough energy to cause fusion;(1) aware (quantum) tunnelling can occur so fusion at distances > x_{0} or AW;(1) any 3	3	[3]
	(e)(i)	reactant mass = 2 x 1.007 276 = 2.014 552 u product mass = 2.013 553 + 0.000 549 = 2.014 102 u		
		so $\Delta m = 4.5 \times 10^{-4} \text{ u}$ $E = \Delta m c^2$ $= 4.5 \times 10^{-4} \times (1.66 \times 10^{-27}) \times (3.0 \times 10^8)^2 = 6.7 \times 10^{-14} \text{ J}$	1 1 1	[3]
		allow conversion using 1 u = 931 MeV		
	(ii)	positron and electron annihilate	1	[1]
				13
64	(a)	number of <i>decayed</i> U-238 nuclei = ½ x number of <i>undecayed</i> U-238	1	
		nuclei; so $^1/_3$ of U-238 has decayed and $^2/_3$ of U-238 has not decayed; (so ratio $=$ $^2/_3$)	1	[2]
	(b)	either $\lambda = 0.693 / T_{\frac{1}{2}} = 0.693 / (4.47 \times 10^9) \ (= 1.55 \times 10^{-10} \text{y}^{-1}) \ \text{subs.}$ $N = N_0 \text{e}^{-\lambda t} \ \text{so} \ N / N_0 = \text{e}^{-\lambda t} \ \text{and} \ \ln \left(N / N_0 \right) = -\lambda t$ $\ln \left(0.667 \right) = -1.55 \times 10^{-10} t \ \text{alg.} / \text{arith.}$ $\text{so} \ t = 2.61 \times 10^9 \text{y} \ \text{and} \ \ln \left(0.667 \right) = x \ln (0.5)$ $\text{and} \ x = 0.584 \ \text{then} \ t = x T_{\frac{1}{2}} = 0.584 \times 4.47 \times 10^9 = 2.61 \times 10^9 \text{y}$	1 1 1	[3]
	(c)	either $N_0 = (5.00 / 238) \times 6.02 \times 10^{23}$ subs. = 1.26 x 10 ²² atoms ans.	1	
		or $N_0 = (5.00 \times 10^{-3}) / (1.67 \times 10^{-27} \times 238)$ (1) = 1.26 x 10 ²² atoms (1)		[2]
	(d)	exponential decay graph for U: starts from N_0 and approaches t axis; exponential growth of Pb from zero: approaches a constant value of N_0 ; lines sensibly 'mirror images';	1 1 1	[3]
l				10

				1		
65	(6	a)(i)	leptons;	1	[1]
		(ii))	neutrino / muon / tau(on);	1	[1]
	(I	o)(i)	up down down / udd;	1	[1]
		(ii	i)	Q B S		
				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -	
		(ii	ii)	so for neutron $Q = 0$		
				B = 1 $S = 0$	1	[3]
	(0	c)		either express in quarks:		
				u + u-bar τ d + u u d s-bar d d	1	
				compares quarks: (u: u + u + u-bar τ u u's cancel, so balances)	1	
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
				or $ (Q: 1-1 \tau 0+0 \\ B: 1+0 \tau 0+1) \\ S: 0+0 \tau 1+0 \\ correct S equation gets 2, 0+0 = -1+0 gets 1; $ (2)		
				not possible because S does not balance; (2)	[4]	
				'not possible' unsupported gets zero		10
66		а		39; number of protons (in Y-90 nucleus)/atomic no. (of Y)	2	
		b	i	81; number of neutrons (in the Ba-137 nucleus) the number of atoms/nuclei which decay per second or number of	2	4
			ii	atomic/nuclear decays per second 0.693/(30 x 3.15 x 10 ⁷)	1 1	
		С	i	= $7.3(3) \times 10^{-10} (s^{-1})$ (A = λ N)= $7.33 \times 10^{-10} \times 3.525 \times 10^{15}$ ecf b(ii)	1 1	3
				or can take the gradient of the tangent to the curve at (15,3.525) = 2.58 x 10 ⁶ Bg or 2.60 MBg	1	
			ii	e.g. take N at t = 15 y then N = $N_o \sqrt{2}$ giving 3.525 x $10^{15} = 0.707 N_o$ hence $N_o = 4.99 \times 10^{15}$		
				or use N = N _o e ^{-λt} with appropriate substitution for N and t award marks as follows: viable method; suitable substitutions; achieving correct solution	2	
			iii	N = $(m/M)N_A$ or $4.99 \times 10^{15} = (m/137) \times 6.02 \times 10^{23}$ hence m = 1.14×10^{-6} g $ecf c(ii)$	1 1	7 14

b

ratio of atom to nuclear diameter/radius: about 10⁴ or 10⁵; atomic or nuclear diameter given, i.e 10⁻¹⁰ m or 10⁻¹⁴ m or 10⁻¹⁵ m *do not score twice if mark already given in (a) for atomic diameter* 1 1 or giving both atomic and nuclear diameters can score both marks above electrons can be accelerated to give speeds where wavelength is of order of 1 nuclear radius/diameter; so that diffraction effects are observable 1 statement that hard X-rays are still at atomic size wavelengths 1 energy of X-rays required well above electron transition energies to achieve such 1 small wavelengths/some calculation using $c = f\lambda$ and energy = hf to show energy 1 of X-rays required up to 3 marks 1 pattern/size of ring enables radius of the nucleus to be found 1 max 4 Total 11 Quality of Written Communication (see separate sheet)