68	a)	A is the equilibrium position / (resultant) force at A is zero; separation between two <u>neutrons</u> / diameter of a neutron;	1 1 [2]	
	(b)	gradient of line = $[+20 - (-20)] \times 10^3$ = $(-)2.0 \times 10^{20} (\text{N m}^{-1})$ minus sign magnitude accept $-2.0 \times 10^{17} \text{kN m}^{-1}$) no units but minus sign given can get $1/2$	1	[2]
	(c)	$F_{E} = \frac{Q^{2}}{4 \pi \epsilon_{0} x^{2}}$ $= \frac{(1.6 \times 10^{-19})^{2}}{4 \pi \times 8.85 \times 10^{-12} (1.4 \times 10^{-15})^{2}} = 117 \text{ N}$ accept $1/(4\pi \times 8.85 \times 10^{-12}) = 9 \times 10^{9}$ gives 117.6 accept ans. = 118 N	1 1 [2]	
	(d)(i)	either strong force + electrostatic force = 0 or attractive strong force = repulsive electrostatic force or they are equal and opposite	1	[1]
	(ii)	at equilibrium, strong force = 117N (1) so separation of B from A = $\frac{117}{2.0 \times 10^{20}}$ = $5.9 \times 10^{-19} \text{m}$ (= $5.9 \times 10^{-4} \text{fm}$) B is greater than / to the right of A (on graph) (1) because electrostatic force is repulsive (1) (slight) increase in strong (attractive) force to compensate for electrostatic force (1)	1 (+1))
		any 2	2	[3]
				10

69	a)	reaction 1 ${}^{238}_{92}$ U + ${}^{1}_{0}$ N τ ${}^{239}_{92}$ U reaction 2 ${}^{239}_{92}$ U τ ${}^{0}_{-1}$ e + ${}^{239}_{93}$ Np + ${}^{-}_{V}$	1 2	
		reaction 3 $^{239}_{93}{\rm Np}$ $\tau ^{0}_{-1}{\rm e} + ^{239}_{94}{\rm Pu} + ^{-}_{\nu}$	1	[4]
		no neutrino gets $1 + 1 + 0 = 2/4$ max. wrong neutrino(s) gets $1 + 1 + 1 = 3/4$ incorrect symbol for beta i.e. e^- or $\beta^ -1$ once		
	(b) (i)	measured from graph $T_{\frac{1}{2}} = 2.36 \text{days}$ (accept 2.3 - 2.4) so $T_{\frac{1}{2}} = 2.36 \times 24 \times 3600 = 2.04 \times 10^5 \text{s}$ accept $(1.98 - 2.10) \times 10^5$	1	[2]
	(ii)	$\lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{2.04 \times 10^5}$ (= 3.4 × 10 ⁻⁶ s ⁻¹)	1	[1]
	(iii)	$A = \lambda N$ from graph $A = 2.77 \times 10^{12} \text{ s}^{-1}$ accept $(2.75 - 2.80) \times 10^{12}$ so $N = \frac{2.77 \times 10^{12}}{3.4 \times 10^{-6}} = 8.15 \times 10^{17}$ accept $(8.05 - 8.24) \times 10^{17}$	1 1 1	[3]
		alternative finds A by calculation from $A_0 = 5.0 \times 10^{12}$ Bq etc. can score 3/3		
	(c)(i)	24000 y	1	[1]
	(ii)	horizontal line	1	[1]
				12
70	a)	mass = 1.67×10^{-27} kg	1	[2]
	(b)	in particle accelerator / near high-energy particle collision or AW / in cosmic	1	[1]
		rays / in Sun;	ľ	
	(c)(i)	two γ-photons are produced;) or from with equal energy / frequency;) sketch travelling in opposite directions;) in (iii)	1 1 1	[3]
	(c)(i) (ii)	two γ -photons are produced;) or from with equal energy / frequency;) sketch travelling in opposite directions;) in (iii) total energy of a proton = (rest energy + k.e.) = $mc^2 + \frac{1}{2}mv^2$ equation so total energy = $2 \times 1.67 \times 10^{-27} \times (3.00 \times 10^8)^2 + 2 \times 8.00 \times 10^{-11}$ subs. (= $3.00 \times 10^{-10} + 1.60 \times 10^{-10} = 4.60 \times 10^{-10} \text{ J}$)	1 1 1 1	[3]
		two γ -photons are produced;) or from with equal energy / frequency;) sketch travelling in opposite directions;) in (iii) total energy of a proton = (rest energy + k.e.) = $mc^2 + \frac{1}{2}mv^2$ equation so total energy = $2 \times 1.67 \times 10^{-27} \times (3.00 \times 10^8)^2 + 2 \times 8.00 \times 10^{-11}$ subs. (= $3.00 \times 10^{-10} + 1.60 \times 10^{-10} = 4.60 \times 10^{-10} \text{ J}$) for two photons, total energy = $4.60 \times 10^{-10} \text{ J}$ energy of one photon = hf i.e. $2hf$ for two photons	1 1 1 1	[3]
		two γ -photons are produced;) or from with equal energy / frequency;) sketch travelling in opposite directions;) in (iii) total energy of a proton = (rest energy + k.e.) = $mc^2 + \frac{1}{2}mv^2$ equation so total energy = $2 \times 1.67 \times 10^{-27} \times (3.00 \times 10^8)^2 + 2 \times 8.00 \times 10^{-11}$ subs. (= $3.00 \times 10^{-10} + 1.60 \times 10^{-10} = 4.60 \times 10^{-10} \text{ J}$) for two photons, total energy = $4.60 \times 10^{-10} \text{ J}$	1 1 1 1 1	[3]
		two γ -photons are produced;) or from with equal energy / frequency;) sketch travelling in opposite directions;) in (iii) total energy of a proton = (rest energy + k.e.) = $mc^2 + \frac{1}{2}mv^2$ equation so total energy = $2 \times 1.67 \times 10^{-27} \times (3.00 \times 10^8)^2 + 2 \times 8.00 \times 10^{-11}$ subs. (= $3.00 \times 10^{-10} + 1.60 \times 10^{-10} = 4.60 \times 10^{-10}$ J for two photons, total energy = 4.60×10^{-10} J energy of one photon = hf i.e. $2hf$ for two photons so $2 \times 6.63 \times 10^{-34} f = 4.60 \times 10^{-10}$	1 1 1 1 1 1	
		two γ -photons are produced;) or from with equal energy / frequency;) sketch travelling in opposite directions;) in (iii) total energy of a proton = (rest energy + k.e.) = $mc^2 + \frac{1}{2}mv^2$ equation so total energy = $2 \times 1.67 \times 10^{-27} \times (3.00 \times 10^8)^2 + 2 \times 8.00 \times 10^{-11}$ subs. $(=3.00 \times 10^{-10} + 1.60 \times 10^{-10} = 4.60 \times 10^{-10} \text{ J})$ for two photons, total energy = $4.60 \times 10^{-10} \text{ J}$ energy of one photon = hf i.e. $2hf$ for two photons so $2 \times 6.63 \times 10^{-34} f = 4.60 \times 10^{-10}$ and $f = 3.47 \times 10^{23} \text{ Hz}$ ans. ignores rest mass and gets $f = 1.2 \times 10^{23} \text{ Hz}$ can get	1 1 1 1 1 1	
	(ii)	two γ -photons are produced;) or from with equal energy / frequency;) sketch travelling in opposite directions;) in (iii) total energy of a proton = (rest energy + k.e.) = $mc^2 + \frac{1}{2}mv^2$ equation so total energy = $2 \times 1.67 \times 10^{-27} \times (3.00 \times 10^8)^2 + 2 \times 8.00 \times 10^{-11}$ subs. (= $3.00 \times 10^{-10} + 1.60 \times 10^{-10} = 4.60 \times 10^{-10} \text{ J}$) for two photons, total energy = $4.60 \times 10^{-10} \text{ J}$ energy of one photon = hf i.e. $2hf$ for two photons so $2 \times 6.63 \times 10^{-34} f = 4.60 \times 10^{-10}$ and $f = 3.47 \times 10^{23} \text{ Hz}$ ans. ignores rest mass and gets $f = 1.2 \times 10^{23} \text{ Hz}$ can get $2/4$ ignores k.e. and gets $2.3 \times 10^{23} \text{ Hz}$ can get $2/4$ factor 2 omission: -1	1 1 1 1 1 1	

1			ı	
71	(a)	$^{2}_{1}H + ^{3}_{1}H \tau ^{4}_{2}He + ^{1}_{0}n$	1	[1]
	(b)	reactants mass: 2.0141 + 3.0160 = 5.0301 u products mass: 4.0026 + 1.0086 = 5.0112 u		
		so mass defect = 5.0301 - 5.0112 = 0.0189 u = 0.0189 × 1.66 × 10 ⁻²⁷ kg (= 3.14 × 10 ⁻²⁹ kg)	1	
		energy = mc^2 = $3.14 \times 10^{-29} \times (3.00 \times 10^8)^2$ = 2.82×10^{-12} J ans.	1	[4]
		or $E = 0.0189 \times 932 \ (= 17.6 \text{MeV}) = 2.82 \times 10^{-12} \text{J}$		
	(c)	mean neutron k.e. = $\frac{80}{100} \times 2.83 \times 10^{-12}$ = 2.26×10^{-12} J	1	[1]
	(d)	neutron has smaller ($^1/_4 \times$) mass than 4_2 He; (1) because of conservation of mtm. it has larger (4 ×) speed than 4_2 He; (1) k.e. = $^1/_2 m v^2$ or k.e. proportional to $^2/_3$; (1) deduces that faster moving neutron carries more energy (than 4_2 He); (1) because k.e. proportional to $^2/_3$, this outweighs greater mass of 4_2 He; (1) any 3	3	
		remaining energy absorbed by / becomes k.e. of ⁴ ₂ He nucleus;	1	[4]

72	(a)	¹⁴ ₆ C ¹⁴ ₈ O ¹⁴ ₇ N 2/3 correct gets 1/2	2	[2]
	(b)	$^{14}_{6}$ C τ $^{14}_{7}$ N + $^{0}_{1}$ e + $^{-1}_{}$ first equation (1)	2	[2]
		incorrect beta particle symbol (i.e. e ⁻ or β ⁻) loses -1 once -1 e or 1 e omitted gets 0/1 for relevant equation neutrino incorrectly shown loses -1 once neutrino omitted from an equation 0/1 omitted altogether 0/2		
	(c)	n τ p + e ⁻ + $\overline{\nu}$ and p τ n + e ⁺ + ν ; n is udd, p is uud; udd τ uud + e ⁻ + $\overline{\nu}$ and uud τ udd + e ⁺ + ν gets first two marks	1	
		then deduces that: $d \tau u + e^{\tau} + \frac{1}{\nu}$ $u \tau d + e^{+} + \nu$ allow neutrino ecf from (b)	1	[4]
İ	(d)	C N and O points shown and labelled with N as the smallest mass;	1	
		when decay occurs there is (always) a loss of (rest) mass;	1	[2] 10

73	 1	uranium-235 is the (main) fissile material;	1	
	2	thermal neutron is <i>either</i> a slow-moving (neutron) or has k.e. ⊄ mean k.e. of atoms / molecules due to thermal agitation;	1	
	3	(fissile) nucleus absorbs a neutron;	1	
	4	only / mainly thermal neutrons cause (further) fission	1	
	5	nucleus splits / fissions into two nuclei / parts;	1	
	6	emitted neutrons can cause further fissions / cause chain reaction;	1	
	7	(most neutrons) need slowing down / moderating; (1)		
	8	reference to delayed neutrons or AW; (1)		
	9	importance of delayed neutrons in relation to controlling rate of reaction; (1)		
	10	either product nuclei 'bunched' around two mass numbers		
		or graph showing peaks, sensibly symmetrical	1	
	11	symmetry of graph about nuclide whose mass ⊄ ½ mass of $^{235}_{92}$ U;		
	12	(1)		
	13	fission generates (kinetic) energy; (1)		
	14	hence temperature of uranium rises; (1)		
	15	coolant carries heat from uranium / reactor core; (1)	1	
	16	heat used to change water to steam;		
		either steam drives turbines linked to (electrical) generators	1	
		or steam drives turbines and generates electricity;	3	[12]
		any 3		12
				12
74	а	i choose two from: penetrations; ionisation; charge; nature; mass;	2	
		speed; monoenergetic v continuous spectrum of energy/speed some qualification/detail for each	2	
		ii choose two from: source; energy range/ wavelength or frequency	2	
		range; penetrating power some qualification/detail for each	2	8
	b	$I = I_0/r^2$ or $I = kr^{-2}$	1	
		$k = 40 \text{ so } I = 40/(0.25)^2 = 40 \text{ x } 16 = 640$ ii 1 1280	1 1	
		2 1280 = $40/r^2$; so $r = \sqrt{(40/1280)} = 0.18$ (m)	2	5
		Total		13

ı				
75	(a) (i)	number of nucleons = 27 so mass of nucleus = $27 \times 1.67 \times 10^{-27} = 4.5(1) \times 10^{-26}$ kg	1	[1]
	(ii)	volume of nucleus $V = {}^4/_3 \pi r^3$ $r = 27^{1/3} \times 1.40 \times 10^{-15}$ (= 4.20×10^{-15} m) arith. $V = {}^4/_3 \pi (4.20 \times 10^{-15})^3 = 3.1(0) \times 10^{-43}$ m ³ ans.	1 1 1	[3]
		$V = {}^{4}/_{3} \pi (A^{1/3}r_{0})^{3} = {}^{4}/_{3} \pi A r_{0}^{3}$ $= {}^{4}/_{3} \pi \times 27 \times (1.40 \times 10^{-15})^{3} = 3.1(0) \times 10^{-43} \text{ m}^{3}$ (at least 2 sf)		
	(iii)	density of nucleus = $\frac{4.51 \cdot x \cdot 10^{\frac{-26}{3}}}{3.10 \times 10^{43}}$ = $1.45 \times 10^{17} \text{ kg m}^{-3}$ must show substitution and <i>calculated</i> answer (not just 1.5 x 10 ¹⁷)	1	[1]
	(b)	either density of gold nucleus = 1.45 × 10 ¹⁷ kg m ⁻³ / 1.5 x 10 ¹⁷ or density of gold nucleus = density of aluminium nucleus; because spacing of nucleons is same inside both nuclei; (1)	1	
		proton and neutron have approx. same mass (so proportions of neutrons and protons make no difference); (1)		
		the volume of a nucleus is proportional to number of nucleons; (1) any (1)	1	[2]
	(c) (i)	$\frac{197 \cdot \times \cdot (1.67 \cdot \times \cdot 10^{-27})}{27 \times (1.67 \times 10^{-27})} = 7.3$ $19.3 \cdot \times \cdot (10^{3}) = 7.1;$	1	
		2.70 × (10 ³) either have assumed that mass of atom = mass of nucleus or have assumed that electrons (in atom) have negligible mass;	1 [2]	
	(ii)	(average) space occupied by gold <u>atom</u> =/~ (average) space occupied by aluminium <u>atom</u> ; allow: volume of gold <u>atom</u> =/~ volume of aluminium <u>atom</u> not 'size'	1	
		do not allow mass of atom(s) proportional to density	40	[1]
l			10	

 (b)(i) sum of nucleon numbers / masses of products is constant / equal to 236; so for every small nucleus there is a (corresponding) large nucleus or AW; 1 [Question	Expected Answers	Marks	
nuclear fission is triggered / induced / caused by an (incoming) neutron; (1) radioactive decay is spontaneous; (1) any (2) 2 [(b)(i) sum of nucleon numbers / masses of products is constant / equal to 236; so for every small nucleus there is a (corresponding) large nucleus or AW; 1 [(ii) proton number = 46 nucleon number = 118; 1 [(c) proton number = 39 nucleon number = 94; 1 [(d)(i) \(\frac{140}{33} \) 1 > \(\frac{1}{0} \) n + \(\frac{139}{33} \) 1 \(\frac{1}{35} \) 1 > \(\frac{1}{0} \) n + \(\frac{139}{34} \) 1 \(\frac{140}{35} \) N = \(\frac{1}{3} \) e + \(\frac{140}{34} \) Xe + \(\frac{1}{V} \) omits \(\frac{1}{V} \) gets 2/2 (ii) idea that fission products have too many neutrons / neutron rich (to be stable) or AW; idea that \(\frac{1}{V} \) emission reduces number of neutrons / increases number of protons / reduces neutron/proton ratio; 1 [(iii) neutron decay: reactant mass: 139.9019 product mass / energy > reactant mass / energy, so reaction cannot occur beta decay: reactant mass: 139.9019 product mass: 139.8919 + 0.0006 = 139.8925 u product mass / energy < reactant mass / energy, so reaction can occur	76	(a)			
radioactive decay is spontaneous; (1) any (2) 2 [(b)(i) sum of nucleon numbers / masses of products is constant / equal to 236; so for every small nucleus there is a (corresponding) large nucleus or AW; 1 [(ii) proton number = 46 nucleon number = 118; 1 [(c) proton number = 39 nucleon number = 94; 1 [(d)(i) $\frac{140}{53}$ -> $\frac{1}{0}$ n + $\frac{139}{53}$ 1 2 0 0 1 1 2 2 2 2 2 2 2 2			in radioactive decay α or β or photon is emitted; (1)		
(b)(i) sum of nucleon numbers / masses of products is constant / equal to 236; so for every small nucleus there is a (corresponding) large nucleus or AW; 1 [1] (ii) proton number = 46 nucleon number = 118; 1 [1] (c) proton number = 39 nucleon number = 94; 1 [1] (d)(i) $\frac{180}{53}1 \rightarrow \frac{1}{0}n + \frac{139}{53}1$ 1 1 [1] (d)(ii) $\frac{180}{53}1 \rightarrow \frac{1}{0}n + \frac{139}{53}1$ 1 2 [1] (iii) $\frac{180}{53}1 \rightarrow \frac{1}{0}n + \frac{139}{53}1$ 2 [1] (iii) $\frac{180}{53}1 \rightarrow \frac{1}{0}n + \frac{139}{53}1$ 2 [1] (iii) $\frac{1}{10}1 = \frac{1}{10}1 = \frac{1}{10}$			nuclear fission is triggered / induced / caused by an (incoming) neutron; (1)		
 (b)(i) sum of nucleon numbers / masses of products is constant / equal to 236; so for every small nucleus there is a (corresponding) large nucleus or AW; 1 [radioactive decay is spontaneous; (1)		
so for every small nucleus there is a (corresponding) large nucleus or AW; (ii) proton number = 46 nucleon number = 118; (c) proton number = 39 nucleon number = 94; (d) (i)			any (2)	2	[2]
(c) proton number = 39 nucleon number = 94; (d) (i)		(b)(i)	·		[2]
 (d)(i)		(ii)	proton number = 46 nucleon number = 118;	1	[1]
140 1		(c)	proton number = 39 nucleon number = 94;	1	[1]
omits \overline{v} gets 1/2 \overline{v} instead of \overline{v} gets 2/2 (ii) idea that fission products have too many neutrons /neutron rich (to be stable) or AW; idea that β' emission reduces number of neutrons / increases number of protons / reduces neutron/proton ratio; (iii) neutron decay: reactant mass: 139.9019 product mass: 138.8969 + 1.0087 = 139.9056 u product mass / energy > reactant mass / energy, so reaction cannot occur beta decay: reactant mass: 139.9019 product mass: 139.8919 + 0.0006 = 139.8925 u product mass / energy < reactant mass / energy, so reaction can occur		(d)(i)	${}^{140}_{53}$ -> ${}^{1}_{0}$ n + ${}^{139}_{53}$	1	
omits \overline{v} gets 1/2 \overline{v} instead of \overline{v} gets 2/2 (ii) idea that fission products have too many neutrons /neutron rich (to be stable) or AW; idea that β emission reduces number of neutrons / increases number of protons / reduces neutron/proton ratio; 1 \overline{v} neutron decay: reactant mass: 139.9019 \overline{v} product mass: 138.8969 + 1.0087 = 139.9056 \overline{v} product mass / energy > reactant mass / energy, so reaction cannot occur \overline{v} product mass: 139.9019 \overline{v} product mass: 139.9019 \overline{v} product mass: 139.9019 \overline{v} product mass: 139.8919 + 0.0006 = 139.8925 \overline{v} product mass / energy < reactant mass / energy, so reaction can occur				2	[3]
(iii) idea that fission products have too many neutrons /neutron rich (to be stable) or AW; idea that β' emission reduces number of neutrons / increases number of protons / reduces neutron/proton ratio; (iii) neutron decay: reactant mass: 139.9019			omits $\overline{\nu}$ gets 1/2		•
stable) or AW; idea that β' emission reduces number of neutrons / increases number of protons / reduces neutron/proton ratio; (iii) neutron decay: reactant mass: 139.9019 product mass: 138.8969 + 1.0087 = 139.9056 u product mass / energy > reactant mass / energy, so reaction cannot occur beta decay: reactant mass: 139.9019 product mass: 139.8919 + 0.0006 = 139.8925 u product mass / energy < reactant mass / energy, so reaction can occur			ν instead of $\overline{\nu}$ gets 2/2		
idea that β' emission reduces number of neutrons / increases number of protons / reduces neutron/proton ratio; (iii) neutron decay: reactant mass: 139.9019		(ii)			
(iii) neutron decay: reactant mass: 139.9019				1	
product mass: 138.8969 + 1.0087 = 139.9056 u product mass / energy > reactant mass / energy, so reaction cannot occur beta decay: reactant mass: 139.9019 product mass: 139.8919 + 0.0006 = 139.8925 u product mass / energy < reactant mass / energy, so reaction can occur				1	[2]
product mass: 138.8969 + 1.0087 = 139.9056 u product mass / energy > reactant mass / energy, so reaction cannot occur beta decay: reactant mass: 139.9019 product mass: 139.8919 + 0.0006 = 139.8925 u product mass / energy < reactant mass / energy, so reaction can occur					
product mass / energy > reactant mass / energy, so reaction cannot occur beta decay: reactant mass: 139.9019		(iii)			
beta decay: reactant mass: 139.9019 product mass: 139.8919 + 0.0006 = 139.8925 u product mass / energy < reactant mass / energy, so reaction can occur			·	-	
product mass: 139.8919 + 0.0006 = 139.8925 u product mass / energy < reactant mass / energy, so reaction can occur			occur		
product mass / energy < reactant mass / energy, so reaction can occur				-	
			·	1	[4]
77 (a) (i) $E_p = \frac{(1.6 - \times -10^{-19})^2}{4\pi \times 8.85 \times 10^{-12} \times 2.0 \times 10^{-15} -}$					15
$4\pi \times 8.85 \times 10^{-12} \times 2.0 \times 10^{-15}$	7	7 (a) (i)	$E_{\rm D} = (1.6 \times 10^{-19})^2$	1	
			$4\pi \times 8.85 \times 10^{-12} \times 2.0 \times 10^{-15}$		
$= 1.15 \times 10^{-13} \text{ J}$			$= 1.15 \times 10^{-13} \text{ J}$	1	[2]
allow 1.1 x 10 ⁻¹³ or 1.2 x 10 ⁻¹³ but not 1 x 10 ⁻¹³			allow 1.1 x 10 ⁻¹³ or 1.2 x 10 ⁻¹³ but not 1 x 10 ⁻¹³		

(ii)	$E_p = 2E_k$	1	[1]
(iii)	$E_{k} = 1.15 \times 10^{-13}$ (= 5.75 × 10 ⁻¹⁴) J	1	
	subs.	1	[2]
	$5.75 \times 10^{-14} = 2.1 \times 10^{-23} T \qquad T = 2.7 \times 10^{9} \text{ K}$ ans.		
	allow ecf form (a)(ii) eg $E_K = E_P$ gives $T = 5.48 \times 10^9$		
(iv)	either ¹ ₁ H nuclei have a range of speeds / energies		
	or 5.75 × 10 ⁻¹⁴ J is only an average k.e;		
	(1)		
	some of them have enough energy to fuse;		
	(1)		
	quantum tunnelling can occur;	2	[2]
	(1) any 2	_	1-1
(b)	either ¹ ₁ H consists of a single proton, so no binding has occurred	1	[1]
	or only one nucleon / proton so no further splitting possible;		
(c)(i)	$4_1^1H \rightarrow {}^4_2He + 2_1^0e + 2v$	1	[1]
	omits neutrinos altogether 0/1		
	allow 1 neutrino instead of 2		
	allow either neutrino or anti-neutrino		
(ii)	binding energy of ⁴ ₂ He nucleus = 4×7.2 MeV (= 28.8 MeV)	1	
	so energy released = $28.8 \times 10^6 \times 1.6 \times 10^{-19}$ = 4.61×10^{-12} J	1	[2]
			11

7	•
	~
•	•

	-				
78	1	strong force	short range;		
	2	electrostatic	long range;	1	
	(3)	gravitational force	long range; (1)	1	
	4	strong force	sketch graph;	·	
	_	_			
	5	electrostatic	F proportional to $1/r^2$ or sketch graph;	1	
	(6)	gravitational force	F proportional to $1/r^2$ or sketch graph; (1)	1	
	7	strong force	holds nucleus together (against repulsion between		
	8		protons); acts on all nucleons / protons and neutrons;		
	9	electrostatic	acts only on protons / not on neutrons;	1	
	10		always repulsive (in nucleus);	1	
	11	gravitational force	(very) weak / negligible (inside nucleus);	1	
	(12)		attractive only; (1)	1	
	(13)		acts on protons and neutrons; (1)	1	
			any (1)	1	[10]
					10

79	a)	hadrons / baryons / nucleons;	1	[1]
	(b) (i)	the proton is (totally) stable (inside the nucleus);	1	[1]
	(ii)	free protons are stable	1	[1]
	(c)	either $N = N_0 e^{-\lambda t}$ $\lambda = \frac{\ln 2}{613} = \frac{0.693}{613} = 1.13 \times 10^{-3} \text{ s}^{-1}$ $N = 500 \times e^{-1.13 \times 10 \exp(-3) \times 200}$ subs. $= 500 \times 0.798$ = 399 or $N = N_0 (0.5)^x$ where $x = t / T_{\frac{1}{2}}$ $x = \frac{200}{210} = 0.326 \text{ half lives}$	1 1 ans.	[3]
		$ \begin{array}{rcl} & 613 \\ & N &=& 500 \ (0.5)^{0.326} \\ & = & 500 \times 0.798 \\ & = & 399 \\ & allow 398 & allow 2sf \end{array} $		
	(d) (i)	charge baryon number		
		down quark: $-\frac{1}{3}$		
		neutron: 0 1	1	[1]
	(ii)	charge: 2/3 - 1/3 - 1/3 = 0	1	
		baryon number: 1/3 + 1/3 + 1/3 = 1	1	[2]
80	a a nucleus (of a chosen element)		1	9
	a particle/constituent of a nucleus, i.e. proton or neutron b i A is at (81;208) ii B is at (84,212)			2
	 iii There is no change in nucleon and proton number/ the emission is pure energy/e-m radiation/AW c i a few cm/3 to 10 cm; about 1 m/0.3 – 2 m/several m; 1 to 5 mm Al/1 mm Pb 1 – 10 cm of Pb/several m of concrete 			4
	 2 correct 1 mark, 4 correct 2 marks ii source, absorbers placed in front of suitable detector on diagram how results identify source; allowance for background 			
	allow up to 2 marks for distance experiment Total			5 11

(a)	readings of r and A and calculation of r_0 answer in range (1.41 - 1.45)10 ⁻¹⁵ m;	1	[2]
	misreads graph, gets 0/2		
(b) (i)	radius $r = 1.43 \times 10^{-15} \times 235^{1/3} \ (= 8.82 \times 10^{-15} \mathrm{m})$	1	[1]
(ii)	mass of $_{92}^{235}U = 235 \times 1.67 \times 10^{-27} = 3.92 \times 10^{-25} \text{ (kg)}$	1	[1]
(iii)	density $\rho = m/V$ = $(3.92 \times 10^{-25}) / ({}^4/_3 \pi [8.82 \times 10^{-15}]^3)$ = $1.4 \times 10^{17} \text{ kg m}^{-3}$	1 1 1	[3]
(iv)	X = 152 Y = 58	2	[2]
(v)	$r_1 = r_0 A_1^{1/3}$ $r_2 = r_0 A_2^{1/3}$ so $r_1 / r_2 = (A_1 / A_2)^{1/3}$ = $(152 / 83)^{1/3} = 1.2(2)$ or calculates $r_1 = 7.63 \times 10^{-15} \text{ m}$ $r_2 = 6.24 \times 10^{-15} \text{ m}$ etc.	1	[2]
(vi)	either nucleons / protons and neutrons all equally spaced; or neutrons and protons have same size and are touching; (1) proton and neutron have (approx.) same mass; (1) spacing constant because strong force is short range (and much greater than electrostatic force); (1) any 2	2	[2]
		13	

a)	because they cannot have less energy (on average) than the mean k.e. of the uranium atoms they collide with or AW;	1	ı
	or (for zero k.e.) would need to move through material at absolute zero;		
(b) (i)	processes: β ⁽⁻⁾ decays;	1	
	or Pu-239 emits alpha-radiation;		
	nuclides: uranium/U-239; (1) plutonium/Pu-239; (1) neptunium/Np-239; (1) any 1	1	
(ii)	otherwise, greater chance of absorption by U-238; this absorption does not produce a fission;	1 1	
(c)(i)	binding energies per nucleus: ²³⁵ ₉₂ U 7.6×235 (= 1786 MeV)		
(// /	141 Ba 8.4 × 141 (= 1184 MeV)		
	⁹² ₃₆ Kr 8.6 × 92 (= 791 MeV)	1	
	so energy released = (1184 + 791) - 1786	1	
	= 189 MeV	1	
	fails to multiply by nucleon number: $8.4+8.6-7.6 = 9.4$ gets $(0,1,0) = 1/3$		
(ii)	number of U-235 atoms in 1.00 kg = $1.00 / (235 \times 1.67 \times 10^{-27}) = 2.55 \times 10^{24}$		
	or $6.02 \times 10^{23} / (0.235) = 2.56 \times 10^{24}$	1	
	so energy released by fission of 1.00 kg of U-235	1	
	$= 2.55 \times 10^{24} \times 200 \times 1.6 \times 10^{-19} \times 10^{6}$ $= 8.2 \times 10^{13} \text{ accept } 8 \times 10^{13}$	1	
	or $2.55 \times 10^{24} \times 189 \times 1.6 \times 10^{-19} \times 10^6 = 7.7 \times 10^{13} \mathrm{J}$		
(d)	idea that more / bigger proportion of neutrons escape from smaller mass;	1	
	idea that chain reaction accelerates / more neutrons produced in each generation <i>or</i> AW;	1	
	or alternative answer in terms of smaller bodies (with greater surface area/volume) cool more quickly (than larger bodies); can get 1/2		

83	(a)	particles (to be fused) have positive / like charges, so repel / cause coulomb barrier; they have to be brought (very) close together for fusion / strong force to be attractive; so work has to be done / p.e. of system has to increase; (1) this work / p.e. has to come from k.e. of particles or AW; (1) any 1 for particles to have high k.e., (plasma) must have high temperature;	1 1 1 1	[4]
	(b)(i)	reaction 2 reactant mass = 2.01410 + 3.01605 (= 5.03015) product mass = 4.00260 + 1.00866 (= 5.01126) arith. mass defect = 0.01889 u ans. reaction 2 is more suitable because it generates more energy (per fusion reaction);	1 1	[3]
	(ii)	(accuracy would not / could not be improved) because same number of electrons on both sides (of equation);	1	[1]
	(iii)	all reactant nuclei have same charge / number of protons; so Coulomb barrier / repulsion / p.e. gained is same in both cases;	1	[2] 10
84	(a)	$E = mc^{2}$ proton mass = 1.67×10^{-27} kg proton energy = $1.67 \times 10^{-27} \times (3.0 \times 10^{8})^{2}$ (= 1.503×10^{-10} J) $1 \text{ GeV} = 1.60 \times 10^{-19} \times 10^{9} \text{ (= } 1.60 \times 10^{-10} \text{ J)}$ so proton mass = $1.503 \times 10^{-10} = 0.939 \text{ GeV}$	1 1 1 1	[4]
	(b)	percentage increase = 6.00 × 100 = 640 % 0.939	1	[1]
	(c)(i)	proton mass = antiproton mass or figures make this clear energy required = 2 × 0.939 = 1.88 GeV	1	[2]
	(ii)	incoming proton has momentum so products must have momentum or aware conservation of momentum for 1/2	1	
		so products have k.e.	1	[3]
	(iii)	collide protons head-on, with equal speeds in opposite directions; (incoming protons have) no overall initial mtm so products have no mtm;	1 1 12	[2]