85 a)	R = 0.72 = 0.00725 99.28	1	[1]			
(b)	(b) uranium/U-235 has a shorter half-life					
(c)	uses $R = R_0 (\frac{1}{2})^x$ $x = \text{no. of half-lives}$					
	no. of half-lives = $\frac{4.6 \times 10^9}{8.4 \times 10^8}$ (= 5.48)	1				
	$0.00725 = R_0 (\frac{1}{2})^{5.48}$	1				
	so $R_0 = 0.32(3)$ ans.	1	[3]			
	sensible attempt using repeated doubling can get 1/3					
	or $R = R_0 e^{-\lambda t}$ where $\lambda = \ln 2 = 8.30 \times 10^{-10}$ $y^{-1}(1)$ 8.4×10^8					
	$0.00725 = R_0 e^{-8.30 \times \exp(-10) \times 4.6 \times \exp(9)} $ (1)					
	$= R_0 e^{-3.82}$					
	$R_0 = 0.32(3)$ (1)					
(d)	N_0 for U-235 approx. 1/3 of N_0 for U-238;	1				
	R clearly decreasing with time;	1	[2]			
(e)(i)	proton number = -2 neutron number = -2	1	[1]			
(ii)	proton number = +1 neutron number = -1	1	[1]			
(iii)	$p = 92 - 7 \times 2 + 4 \times 1 = 82$ $n = (235 - 92) - 7 \times 2 - 4 \times 1 = 125$	1	[2]			
			11			

[Question	Expected Answers	Marl	(S
86	(a)	lists all quarks: u d s c t b or in words; (1) quarks are fundamental particles or AW; (1) every quark has an antiquark;		
		(1) every antiquark has opposite values of Q, B, S;		
		 (1) quarks are held together by strong force / gluons; (1) Q, B, S are conserved in quark reactions; 	3	
		(1) any 3	1	
		either neutron is udd or proton is uud;	1	
		either $Q = {}^2/_3 - {}^1/_3 - {}^1/_3 = 0$ so charge (on neutron) is zero or $Q = {}^2/_3 + {}^2/_3 - {}^1/_3 = 1$ so charge (on proton) is 1; $B = {}^1/_3 + {}^1/_3 + {}^1/_3$ so baryon number = 1 and $S = 0 + 0 + 0 = 0$ so strangeness = 0 NOT particles / neutron, proton have no strangeness	1	[6]
	(b)	electron (1); positron (1); muon (1); tau (1); electron neutrino (1); muon neutrino (1); kaon neutrino (1); allow any antiparticle to any of these any 4 -1 each error/omission	2	
		weak force ;	1	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	[5]
				11

b

1 α -particle scattering proves existence of a nucleus to the atom: 1 suitable diagram and/or description to illustrate experiment most particles have little if any deflection 1 large deflection of very few shows nucleus is small 1 and very massive/dense 1 deflection explained on basis of charged particle interaction (Coulomb's law) 1 to estimate nuclear size: of order of 10⁻¹⁴ m 1 head-on collision/back scattering 1 1 enables distance of closest approach to be calculated using conservation of energy argument (by equating distant k.e. to 1 6 Coulomb potential energy) Total 11 Quality of Written Communication (see separate sheet)

88	(a)	curve of correct general shape and in correct quadrant; crosses strong force line for $[F] << [F_{max}]$;	1 1 [2]
	(b)	strong force (graph) falls to zero / hits x axis; electrostatic force (graph) does not quite become zero /is asymptotic to x axis	1 1 [2]
	(c)	$F_{\rm e} \propto 1/x^2$ or $F_{\rm e} = Q_1 Q_2/(4\pi \varepsilon_0 x^2)$ accept relationship is inverse square, in words	1 [1]
	(d)(i)	$F_{\rm E} = \underbrace{Q_1 Q_2}_{4\pi \omega_0} \qquad \text{Accept} \ \ \underline{1} = k \qquad F_{\rm G} = \underbrace{m_1 m_2 G}_{\chi^2}$ Allow direct substitution into expression for R so $\underline{F_{\rm E}} = R = \underbrace{Q_1 Q_2}_{\text{Correctly}}$ eliminates x	1
	(ii)	$F_{G} = 4\pi \epsilon_{0} m_{1} m_{2} G$ states $Q_{1} Q_{2} m_{1} m_{2} \epsilon_{0} G$ all constant or AW $R = \frac{(1.6 \times 10^{-19})^{2}}{4\pi \times 8.85 \times 10^{-12} \times (1.67 \times 10^{-27})^{2} \times 6.67 \times 10^{-11}}$ $= 1.24 \times 10^{36}$	1 1 [5]
		ans. 8.1 × 10 ⁻³⁷ (inverse) gets 1/2	10

(a)(i)	finds BE / nucleon from graph: U 7.40 MeV Cs 8.15 Rb 8.20		1			
	calculates BEs per nucleus : U 7.40 × 236 = 1746 MeV Cs 8.15 × 138 = 1125 Rb 8.20 × 96 = 787		1			
calculates energy released: = 1125 + 787 - 1746						
	= 166 MeV allow 165		1			
	-1 each for graph reading errors but allow ecf wrong BE per nucleon – no ecf doesn't multiply by nucleon number to get 8.95 gets 1, 0, 0, 0 =	= 1/4	[4]			
(ii)	becomes k.e. of neutrons / product nuclei ;	(1)				
	energy transferred by collisions with other nuclei ;	(1)				
	becomes random k.e. / heat of surrounding nuclei / material ;	(1)				
	allow: initially (electrostatic) p.e. of product nuclei;	(1) any 3	3 [3]			
(b)	general shape ;		1			
	symmetry and quality ;		1 [2]			
(c)(i)	correct point P ; allow P marked on <i>x</i> axis		1 [1]			
(ii)	²³⁶ ₉₂ U → 2 ¹¹⁸ ₄₆ X		1 [1]			
	allow $^{235}_{92}$ U + $^{1}_{0}$ n on left hand side		11			

90 [a)(i) 24 000 y ans.	1 [1]
(i	Pu graph showing exponential decay from N_0 ; falls to about $^{1}/_{4}$ of N_0 ; U graph: N sensibly = N_0 - N_{Pu} no labels -1	1 1 1 [3]
(i	ii) 24 000 y allow ecf	1 [1]
(iv	either because U-235 itself decays (very) slowly or because of randomness half-life is an average value or AW	1 [1]
(b)	mass defect = 239.000 58 - (234.993 45 + 4.001 51) = 0.005 62 u so energy released / $E = mc^2$ = 0.005 62 × 1.66 × 10 ⁻²⁷ × (3.00 × 10 ⁸) ² subs. (= 8.4 × 10 ⁻¹³ J) allow use of 1 u = 931 MeV	1 1 1 [3]
(c)(i)	$E_{\rm k} = \frac{1}{2} m v^2$ $8.4 \times 10^{-13} = \frac{1}{2} \times 4 \times 1.67 \times 10^{-27} v^2$ $v = 1.59 \times 10^7 {\rm m s^{-1}}$ allow 1.6×10^7 $(8 \times 10^{-13} {\rm gives} 1.55 \times 10^7 {\rm m s^{-1}})$	1 1 [2]
(ii	either mass of alpha-particle has increased (slightly) (due to relativity) or recoiling U-235 nucleus has (absorbed) some energy/momentum or γ-emission which takes some energy	1 [1]

91 (a)(i)	LHS RHS				
	reaction 1 Q 0 0+1 (B 1 1+0) (S 0 -1+0)				
	(No) because Q (and S) do not balance	1			
	reaction 2 Q 0 +1-1+0 B 1 1+0+0 S 0 0+0+0				
	(Yes) because Q B and S / all balance	2			
	two out of three gets 1/2				
	reaction 3 Q +1 +1+0 B +1 0+0 (S 0 0+0)				
	(No) because B doesn't balance	1			
	reaction 4 Q +1 0+1+0 B +1 +1+0+0 S 0 0+0+0				
	(Yes) because Q B S / all balance two out of three gets 1/2	2 [6]			
(b)	if not, baryon numbers could not balance ; answers involving quarks score zero	1 [1]			
(c)	no baryon has mass less than proton mass ;				
	(neutron decay:) ${}^{1}_{0}$ n -> ${}^{1}_{1}$ p + ${}^{0}_{-1}$ e + ν -bar gets 2/2 n -> p ⁺ + e ⁻ + ν -bar gets 2/2 n -> p + e + ν (-bar) gets 1/2	2			
	proton mass + electron mass < neutron mass ;	1 [4]			

(d)	when inside a (stable) nucleus ;	1 [1]	
		12	
a)	(very) high temperature; not 'very hot'	1	
2	(very) high density / no. of nuclei per unit volume or AW; not 'high pressure'	1	
2	matter in plasma state ; (1)		
3	mixture of nuclei/ions and electrons ; (1)		
5	plasma forms because high temperature gives electrons enough energy to break free from atom / nucleus ; (1)		
6	high density because gravity pull / attraction pulls nuclei / particles / plasma together; not 'confines' (1)		
7	high density means many collisions /per second or greater rate of collisions; (1)	1	
8	high temperature because gravity has caused matter to heat up during star formation <i>or</i> AW; (1)	2	[
9	high temperature (not 'heat') means protons (not 'particles') have enough (kinetic) energy ;		
9	-to overcome (electrostatic) repulsion (between them / Coulomb barrier ; (1)		
10	any 2	1	
		1	
	$4_{1}^{1}H \rightarrow {}_{2}^{4}He + 2_{1}^{0}e + 2v$ -1 each error	1	
(b)	equation without neutrino includes		
11	neutrino (1)		
12	(energy generated because) either fusion results in greater BE / nucleon or there is a loss of (rest) mass in fusion;		

	13	(few fusions because) mean k.e. (of protons) not enough to overcome repulsion / Coulomb barrier;						4	[7]	
	14	nuclei have a range of speeds / energies (at a given temperature); (1) only a few have enough energy to fuse;					12			
	(1)									
	15			multistage process which few protons actually complete (1)	e or	AW	;			
	16			most collisions not head-on (so not all of k.e. available) (1)	;					
							any 4			
93	3 H	(a)	(i)	An element can exist in more than one form, having a different number		1				
		()		of neutrons/can have different mass but same proton number/AW						
			(ii)	$^{4}_{2}\text{He} / ^{4}_{2}\alpha \; ; \; (-)^{0}_{-1}\text{e} / ^{0}_{-1}\beta$		2				
			(iii)	$^{238}_{92}$ U $\rightarrow ^{234}_{92}$ U $^{+4}_{2}\alpha + ^{0}_{-1}\beta + ^{0}_{-1}\beta$	3		accept ans	ver in te	rms of	A,p or n,p
				or $^{238}_{92}U \rightarrow ^{234}_{90}X + ^{4}_{2}\alpha$ $^{234}_{90}X \rightarrow ^{234}_{91}Y + ^{0}_{.1}\beta$	1		diagram			
				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1					
				or α followed by two β decays;	1					
				nucleon number =238 – 4 – 0 – 0 = 234:	1					
				proton number = 92 – 2 + 1 + 1 = 92	1	3				
		(b)	(i)	N : the number of undecayed nuclei/nuclei of the original element	1					
				(remaining)	1					
				N _o : the initial/original number of nuclei present						
				λ : the (decay) constant relating the activity to the number of undecayed nuclei/AW/the probability of a given nucleus decaying in						
				the next second	1	3				
İ			(ii)	$f = N/N_o = e^{-\lambda t}$; = exp(-0.693 x 4.6 x 10 ⁹ /7.1 x 10 ⁸);	2					
				$= \exp(-4.49) = 0.011$	1					
				or time = 6.48 half lives; so f = 1/2 ^{6.48} ; = 0.011	3	3				
l				Total		12				

	Question	Expected Answers		arks		
94	(a)(i)	r: radius of nucleus / nuclei				
		r ₀ : radius of nucleon / proton / neutron / hydrogen nucleus;				
		A: number of nucleons / (protons + neutrons) / mass number;	2	[2]		
	each omission (-1)					
	(ii)	line curves in correct sense from origin but doesn't become horizontal;	1	[1]		
		any part drawn with ruler loses this mark				
	(b)(i)	$r = r_0 A^{1/3} = 1.41 \times 10^{-15} \times 59^{1/3}$	1			
		= 5.49 x 10 ⁻¹⁵ m	1	[2]		
		do not allow 5.5 × 10 ⁻¹⁵ m				
	(ii)	$m = V \rho \text{ or } \rho = m/V$ allow $m = \frac{4}{3} \pi r^3 \rho$	1			
		= $\frac{4}{3}\pi (5.49 \times 10^{-15})^3 \times 1.44 \times 10^{17}$ (= $9.98 \times 10^{-26} \text{ kg}$)	1	[2]		
	(c)(i)	protons: 27, neutrons: 32;	1	[1]		
	(ii)	mass = $27 \times 1.673 \times 10^{-27} + 32 \times 1.675 \times 10^{-27} = 9.88 \times 10^{-26} \text{kg}$ (9.877 × 10 ⁻²⁶)	1	[1]		
		allow ecf from (c)(i) allow 2 sf				
	(4)	difference in mass = 0.1(0) x 10 ⁻²⁶ = 1 x 10 ⁻²⁷ (kg)	1			
	(d)		'			
		allow ecf from (b)(ii) and (c)(ii)				
		$E = (\Delta)mc^2$	1			
		$= 1 \times 10^{-27} \times (3 \times 10^8)^2 = 9 \times 10^{-11} \text{J}$	1	[3]		
				12		

95 a)(i)	$^{238}_{92}U + ^{1}_{0}n \rightarrow ^{239}_{92}U$	1	
(ii)	$^{239}_{92}U$ -> $^{239}_{93}X$ + $^{0}_{-1}e$ + $^{(0)}_{(0)}v(-bar)$	2	
(iii)	$^{239}_{93}X$ -> $^{239}_{94}Pu$ + $^{0}_{-1}e$ + $^{(0)}_{(0)}v(-bar)$	1	[4]
	wrong neutrinos: 1,1,1 = 3/4		
	omits one neutrino: $(1,2,0)$ or $(1,1,1) = 3/4$ max.		
	omits both neutrinos $(1,1,0) = 2/4 \text{ max}$.		
	use of 0+1e gets 0 for equation		
(b)(i)	24 000 year / >24 000 year	1	[1]
(ii)	$\lambda = \ln 2 / T_{\frac{1}{2}} = \ln 2 / (24000 \times 365 \times 24 \times 3600)$ subs.	1	
	$= 9.16 \times 10^{-13} \mathrm{s}^{-1} or < 9.16 \times 10^{-13} \mathrm{s}^{-1} \qquad \text{ans.}$	1	[2]
	1. x 10 ⁻⁵ y ⁻¹ gets 1 / 2		
	2.89 x 10 ⁻⁵ s ⁻¹ gets 0 / 2		
	allow memorised years to seconds conversion factor		
(c)(i)	either		
	239 g of Pu contain 6.02 x10 ²³ atoms		
	$N = (0.05 \times 3.5 / 0.239) \times 6.02 \times 10^{23}$ includes expression for no. of moles	1	
	= 4.41 x 10 ²³ (atoms) answer	1	[2]
	or		
	mass of Pu-239 = $\frac{5 \times 3.5}{100}$ = 0.175 kg		
	no. of Pu-239 atoms = $\frac{0.175}{239 \times 1.67 \times 10^{-27}}$ includes expression for atom mass	(1)	
	= 4.385 x 10 ²³ answer	(1)	
(ii)	activity = λN	4	
	$= 9.16 \times 10^{-13} \times 4.41 \times 10^{23}$	1	
	$= 4.04 \times 10^{11}$ ans.	1	
	Bq/s ⁻¹ unit	1	[3]
			12

96	(a)	nuclei must overcome (electrostatic) repulsion (to get close enough) to fuse;		
		(1) (gravity) confines / pulls together plasma / nuclei / ions / nucleons / protons;		
		increases density/ concentration / number per unit volume; (1)		
		and increases frequency / number of collisions among nuclei; (1)		
		condensation/collapse under gravity or AW heats plasma / gravitational p.e. changed to heat; (1) any 4	4	[4]
	(b)	either area is potential / stored energy / work done / energy to overcome coulomb barrier / bring nuclei to their critical separation		
		or (minimum) k.e. at infinity or AW;	1	
		it is minimum energy needed for fusion;	1	[2]
	(c)	$E_{\rm k} = 2.07 \times 10^{-23} \times 15 \times 10^6 = 3.1 \times 10^{-16} \rm J$	1	[1]
	(d)	combined (mean) k.e. << required p.e. / energy needed for fusion; (1)		
		aware there is a range / spread of (nuclear) k.e.s; (1)		
		(very) small proportion of ¹ ₁ H nuclei have enough energy to cause fusion;(1)		
		aware (quantum) tunnelling can occur so fusion at distances $> x_0$ or AW;(1)		
		any 3	3	[3]
	(e)(i)	reactant mass = 2 x 1.007 276 = 2.014 552 u		
		product mass = 2.013 553 + 0.000 549 = 2.014 102 u		
		so $\Delta m = 4.5 \times 10^4 \text{ u}$	1	
		$E = \Delta m c^{2}$ $= 4.5 \times 10^{-4} \times (1.66 \times 10^{-27}) \times (3.0 \times 10^{8})^{2} = 6.7 \times 10^{-14} \text{ J}$	1	[2]
		allow conversion using 1 u = 931 MeV		
	(ii)	positron and electron annihilate	1	[1]
				13
			1	

		I		ı	
97	a)	fixed target:	beam of accelerated / high speed / high energy particles;	1	
			collide with (stationary) protons / nuclei;	1	
		colliding beam:	two beams of accelerated / high speed / high energy particles;	1	
			collide them head-on / from opposite directions;	1	
		'fired at' / 'aimed at' / 'directed at' instead of accelerated etc, (-1) once			
		Advantages:			
		fixed target:	high probability of collisions / many collisions because high density of particles in fixed target;	1	
		colliding beam:	(total) initial mtm. (can be) zero so final (overall) mtm. (can be) zero;	1	
			either so all k.e. can contribute to making new particles		
			or two beams means twice as much energy available;	1	[7]
		allow any other	relevant point up to appropriate max.		
	(b)(i)	m _e c≈ m _Z	С	1	
		so m _e ≈ m _Z		1	[2]
	(ii)	ratio = (1.6 x 10 ⁻¹	25)/(9.11 x 10 ⁻³¹) = 1.8 x 10 ⁵	1	[1]
	(iii)	mass increases with speed		1	
		positron and $^0{}_0$ Z have different speeds (so masses have changed by different amounts)			
	(c) much / most of input energy goes into k.e. of ${}^0_0 Z$ particle (so less energy available to create ${}^0_0 Z$)		1	[1]	
					13