(iii) Calculate this constant number of ²³⁹₉₃Np nuclei.

half-life of
$$^{239}_{93}$$
Np = 2.04 × 10⁵ s

- (iv) Sketch a graph on Fig. 2.1 to show how the number of ²³⁹₉₃Np nuclei present varies with time. Label this graph Y. [1]
- (d) (i) What is the half-life of plutonium-239 in seconds?

1 year =
$$3.16 \times 10^7$$
 s

58

(ii) On Fig. 2.1, sketch a graph to show how the number of ²³⁹₉₄Pu nuclei varies with time.
 Label this graph Z. [2]

[Total: 14]

This question is about the possibility of fusion between a tritium nucleus and a deuterium nucleus.

A tritium nucleus ${}_{1}^{3}H$ and a deuterium nucleus ${}_{1}^{2}H$ approach each other along the same line with the **same** speed u.

Fig. 3.1

Each nucleus decelerates, comes to rest and then accelerates in the reverse direction.

(a) (i) By considering conservation of momentum, explain why both nuclei cannot come to rest at the same time.

(ii)	When the nuclei are closest together they have the same velocity . Show that this velocity is $u/5$.
	[2]
(b) (i)	Energy is conserved during the interaction.
	Write a word equation relating the initial energy of the two nuclei when they are far apart, to their energy when they are closest together. Your equation should make clear the kind(s) of energy involved.
	[1]
(ii)	Show that the total initial kinetic energy of the two nuclei is equal to $4.18 \times 10^{-27} u^2$ joule where u is in ms ⁻¹ .
	
	[3]
	[0]

(iii)	Т	he p	otential energy E of two charges $Q_{\mathfrak{f}}$ and $Q_{\mathfrak{g}}$, separated by a distance r is given by			
			$E = \frac{Q_1 \ Q_2}{4\pi \ \epsilon_0 \ r}.$ \(\epsi_0 = \text{permittivity of free space}\)			
	For ${}_{1}^{3}H$ and ${}_{1}^{2}H$ to fuse, their separation must be no more than 1.50 × 10 ⁻¹⁵ m.					
	С	alcu	late the minimum value of u for fusion to take place.			
			minimum value of $u = \dots ms^{-1}$ [4]			
	•		[Total: 11]			
	tellu	ıranıu ırium	Im-236 nucleus, $^{236}_{92}$ U, undergoes fission, producing nuclei of zirconium-100, $^{100}_{40}$ Zr, and I-131, $^{131}_{52}$ Te.			
	(a)	Writ	te a nuclear equation to represent this fission reaction.			
			[1]			
	(b)	Eac	th of the product nuclei is a β^- emitter.			
		(i)	State the change, if any, in the nucleon number and the proton number caused by a $\beta^-\text{emission.}$			
			nucleon number			
			proton number[1]			
		(ii)	The β^- decay of zirconium-100 is followed by three more β^- decays before the product nucleus is stable.			
			State the nucleon number and the proton number of the resulting stable nucleus.			
			nucleon number			
			Table and the second se			

(iii) On Fig. 6.1, use crosses to represent each of the nuclei involved in the series of decays by which zirconium-100 changes to a stable nucleus. Add arrows to show the direction of each reaction. [2]

Fig. 6.1

(iv) On a graph of neutron number against proton number, stable nuclei all lie close to a line. On Fig. 6.1, sketch this line.

(c)	Zirconium-100 decays initially to niobium-100.					
	data:	nuclear masses:	zirconium-100 niobium-100 electron mass	99.895 808 u 99.891 679 u 0.000 549 u		
	(i) Ca	alculate the mass def	ect for this decay re	eaction.		
			mass de	fect = u [2	<u>?]</u>	
(ii)	Show	v that this mass defe	ct is equivalent to a	about 5×10^{-13} J.		
				[2	-	
(iii)	Where 2 × 1	n a particular zirconi 0 ⁻¹³ J. Suggest why	um-100 nucleus de this is less than the	ecays, the emitted β^- particle has only about e energy calculated in (ii).	rt	
	******				,,	
				[2	2]	
				[Total: 12	?]	

h	. 1

(a) The activity A of a sample of a radioactive nuclide is given by the equation

A	-	
Д	1	ľV

		Define each of the terms in the equation.
		A
		λ
		N
		[3]
(b)	of th	000MW coal-fired power station burns $7.0\times10^6\text{kg}$ of coal in one day. Two parts per million ne mass of the coal is $^{238}_{92}\text{U}$. The uranium remains in the residue left after the coal is burnt. Furanium nuclide $^{238}_{92}\text{U}$ decays by α -particle emission with a half-life of $4.5\times10^9\text{years}$ to an ope of thorium.
	(i)	Write down
		1 the proton number Z of thorium
		2 the nucleon number A for this isotope of thorium[1]
	(ii)	Calculate the mass of uranium produced in the residue in one day.
		mass = kg [1]
	(iii)	Hence show that the number of uranium atoms in this mass of uranium is 3.5×10^{25} .

	1 year=3.2×10 ⁷ s
	activity = unit [3]
(c)	To drive the turbines in the power station superheated steam at 450 K is required. Cold water enters the boilers at 290 K. Suggest and explain two reasons why it is not possible to use the formula
	$\Delta Q = mc\Delta \theta$
	to calculate the total energy used to transform the cold water into superheated steam. In the formula ΔQ is the energy absorbed by a mass m of water, c is the specific heat capacity of water and $\Delta \theta$ is its change in temperature.
	[3]
	[Total: 12]

(iv) Calculate the activity of this mass of uranium. Give a suitable unit with your answer.

This question is about nuclear density.

(a) Fig. 1.1 shows the relationship between the cube of the radius *r* of atomic nuclei and nucleon number *A*.

Fig. 1.1

(i) Deduce the gradient of this graph.

gradient =[1]

(ii) Use your answer to (i) to calculate the radius $\it{r}_{\rm{0}}$ of a single nucleon.

radius = m [3]

					density =	kgm ⁻³ [3]
(c)	Dian	nond	is formed fro	om carbon-12 atoms.	The density of diamor	nd is 3530 kg m ⁻³ .
	(i)	Calc	ulate the rati	o density of a carbor density of dia	n-12 nucleus amond	
	(ii)	Eval	ain why this	ratio is so large.	ratio =	[1]
	(11)	Expi	alli Wily tills	ratio is so large.		
						[2]
	¬					[Total: 10]
62	╛			nuclear fission of uranic		
	(a)	(1)	State what is	meant by a <i>thermal ne</i>	utron.	
						[4]
		(ii)	State the imp			[1]
		(ii)	State the imp	ortance of thermal neul	trons in relation to the fis	ssion of dramum-235.
						[1]
	(b)	A u and	ranium-235 n bromine-87 $_3^8$	ucleus ²³⁵ U undergoes ⁷ 5Br. The binding energion		lei of lanthanum-146 ¹⁴⁶ La nuclides are shown below.
				nuclide	binding energy per nucleon/MeV	
				²³⁵ ₉₂ U	7.6	
				¹⁴⁶ La	8.2	
				⁸⁷ ₃₅ Br	8.6	

[1]

(i) Plot these values on the grid of Fig. 2.1.

(b) Calculate the density of a carbon-12 nucleus $^{12}_{\ 6}\mathrm{C}.$

Fig. 2.1

- (ii) Sketch a graph on Fig. 2.1, to show how the binding energy per nucleon varies with nucleon number for all nuclei. [2]
- (iii) Use information from the table to calculate how much energy in MeV is released when a $^{235}_{92}$ U nucleus undergoes fission.

energy = MeV [3]

(iv) Sketch a graph on Fig. 2.2, to show how the relative yield of fission products for uranium-235 varies with nucleon number.[2]

Fig. 2.2

- (v) Use information from Fig. 2.2 to mark on Fig. 2.1 the regions of the graph where most of the fission products lie. Label these regions 'F'.[2]
- (c) (i) Neutrons emitted from a fission reaction may be slowed down by colliding with carbon-12 nuclei $^{12}_{6}$ C. The initial speed of a neutron is $1.5 \times 10^{7} \, \mathrm{m \, s^{-1}}$. On average the neutron's speed after each collision is equal to 0.93 of its speed before the collision. Show that after 120 collisions its speed has been reduced to about $2.5 \times 10^{3} \, \mathrm{m \, s^{-1}}$.

(ii) When a neutron collides head-on with a $^{12}_{6}$ C nucleus, as shown in Fig. 2.3, its speed is reduced by about 15%.

Fig. 2.3

	Su	ggest why this speed reduction is different from the reduction stated in (i).
		[1]
		[Total: 15]
63	This	question is about nuclear fusion reactions inside the Sun.
	(a)	Explain the importance of gravity in making fusion reactions possible inside the Sun.
		[3]

(b) Two hydrogen nuclei ¹₁H, which are initially a long way apart, approach each other along the same straight line.

Fig. 3.1

The repulsive force $F_{\rm e}$ between them varies with their separation x as shown in Fig. 3.2.

Fig. 3.2

The nuclei fuse if their separation becomes equal to or less than a critical separation x_0 . What is the physical significance of the shaded area?

(c) The average kinetic energy $E_{\mathbf{k}}$ in joule, of $^1_1\mathrm{H}$ nuclei inside a star is given by the equation

$$E_{\rm k} = 2.07 \times 10^{-23} \, T.$$

The temperature T of the Sun's interior is 15×10^6 K.

Calculate the combined average kinetic energy of two ¹₁H nuclei inside the Sun.

(d)	The interior of the Sun is mainly composed of 1_1H nuclei and these nuclei collide continually. Two nuclei will fuse if their combined energy exceeds 1.1 \times 10 ⁻¹² J. Use your answer from (c) to explain why only a very small proportion of the head-on collisions between 1_1H nuclei result in a fusion reaction.				
				[3]	
(e)	The hydrogen cycl the Sun. In one of	e of fusion reactions is r these reactions two ¹ ₁ H	responsible for most of nuclei fuse to make a c	the energy generated inside deuterium nucleus ² H thus:	
		$^{1}_{1}H + ^{1}_{1}H \rightarrow$	${}^{2}_{1}H + {}^{0}_{1}e + {}^{0}_{0}v$		
	(i) Calculate the	energy in joule generate	ed by this reaction.		
			mass/u		
		¹ ₁ H nucleus	1.007276		
		² ₁ H nucleus	2.013553		
		0 1 e	0.000549		
				1.101	
(::\	Otata harritha a			J [3]	
(ii)	energy.	oositron ₁ e created in	i the reaction will res	sult in further generation of	
				[1]	
				[Total: 13]	

_	
h	/I
u	-

Uranium-238 238 U decays to lead-206 206 Pb by means of a series of decays.

One nucleus of $^{238}_{92}\mathrm{U}$ decays eventually to one nucleus of $^{206}_{82}\mathrm{Pb}.$

This means that, over time, the ratio of lead-206 atoms to uranium-238 atoms increases. This ratio may be used to determine the age of a sample of rock.

In a particular sample of rock, the ratio

$$\frac{\text{number of lead-206 atoms}}{\text{number of uranium-238 atoms}} = \frac{1}{2}$$

(a) Show that the ratio

$$\frac{\text{number of uranium-238 atoms left}}{\text{number of uranium-238 atoms initially}} = \frac{2}{3}.$$

Assume that the sample initially contained only uranium-238 atoms and subsequently it contained only uranium-238 atoms and lead-206 atoms.

[2]

(b) Calculate the age of the rock sample.

The half-life of $^{238}_{92}\text{U}$ is 4.47×10^{9} years.

	number =	[2]
(d)	On Fig. 5.1, sketch graphs to show how the number of atoms of uranium-238 and the nur of atoms of lead-206 vary with time over a period of several half-lives.	nber
	Label your graphs 'U' and 'Pb' respectively.	[3]
	A	
	N_0	
	number	
	of atoms	
	0	
	0 time	
	Fig. 5.1	
	[Total	: 10]
65	(a) (i) Name the group of particles of which the electron and the positron are members.	
		. [1]
	(ii) Name another member of this group.	
		. [1]
	(b) (i) State the quark composition of the neutron.	
		. [1]

(c) The rock sample initially contained 5.00 g of uranium-238. Calculate the initial number N_0 of atoms of uranium-238 in this sample.

(ii)	Complete the table to show the charge Q, baryon number B and strangeness S	3 for the
	guarks in the neutron.	[2]

quark	Q	В	S

(iii) Hence deduce the values of Q, B and S for the neutron.

(c) It is suggested that a proton p^+ can react with a pi particle π^- to form a kaon K^0 and a neutron, thus

$$p^{+} + \pi^{-} \rightarrow K^{0} + n^{0}$$

data

particle	quark composition
π-	u d
K ⁰	d s

Deduce whether the reaction is possible.

[4]

[Total: 10]

(b)

Two radioactive isotopes which are serious health hazards to human beings are strontium-90 and caesium-137. Both decay by β --emission.

(a)	The nuclear equations for some of the numbers.	or each of	the de	cays are	show	vn below	with letter	s substitut	ed for
		90 38	\rightarrow	⁹⁰ Y	+	β-			
		¹³⁷ ₅₅ Cs	\rightarrow	_{A-N} Ba	+	β-			
	Write down the numerica	l values of	the two	letters	Z and	N. State v	/hat each	represents	5.
	Z								
									[2]
	N								
									[2]
The	e radioactive decay law	can be wri	tten in	the forn	n				
			$A = \lambda$	N					
wh	ere A is the activity, λ is	the decay	consta	nt and	N is th	ne numbe	r of unde	cayed nuc	lei.
(i)	Define the term activit	y.							
									[1]
(ii)	Caesium-137 has a ha	alf-life of 30) years	. Calcul	ate th	e decay o	onstant.		
	1 year = 3.15×10 ⁷ s								

$$\lambda = \dots s^{-1}[2]$$

(c) The radioactive dust cloud from the Chernobyl explosion in 1986 contained caesium-137. Fig. 6.1 shows the graph of the number of undecayed nuclei of caesium-137 remaining in a dust particle against time after the explosion.

Fig. 6.1

(i) Use Fig. 6.1 to calculate the activity of the caesium dust particle after 15 years.

(ii) Use data from the graph to show that the initial number of nuclei of caesium-137 in the dust particle is about 5.0 × 10¹⁵.

[3]

(iii) Hence show that the original mass of caesium-137 in the dust particle is about 1 µg.

67	State the relative sizes of atoms and nuclei. Electrons can be used to give evidence for the radius and structure of the nucleus but X-ray cannot. Explain why this is so.

Quality of Written Communication [4]

[Total: 15]

This question is about the forces between nucleons.

The graph of Fig. 1.1 shows the variation of the strong force between two nucleons with the separation of the centres of the nucleons. Over the range shown this graph is a straight line.

Fig. 1.1

(a) State and explain the significance of the point A in relation to two neutrons.

	gradient =[2]
b)	Find the gradient of the graph.
	[2]

(c)		culate) × 10 ⁻		ectrosta	tic force	e betwee	n two	protons	if their	r separati	on is	equal to
							force	e =				N [2]
(d)	(i)			nust be in equi		he strong	force	and the	electrosta	atic force f	for two	adjacent
												[1]
(ii	cl U	Vhen to lose to Ise the	wo prot	ons are is not sl s from (k	at equi nown or	librium the Fig. 1.1.	eir cen	tres are	at a sep		Point	B is very
	-											
												[3]
											ı	[Total: 10]

This question is about the formation and decay of plutonium-239, $^{239}_{94}$ Pu. Natural uranium is a mixture of the nuclides $^{235}_{92}$ U and $^{238}_{92}$ U. When this natural uranium is exposed to neutrons, the heavier nuclei absorb a neutron. The resulting nucleus then undergoes two decay reactions, resulting in the formation of a $^{239}_{94}$ Pu nucleus.

(a) Write nuclear equations to represent these three reactions. The nuclide formed in reaction 2 is an isotope of neptunium (Np).

reaction 1	
reaction 2	
reaction 3	[4

(b) A physicist prepares a sample of the neptunium isotope which decays to plutonium-239. She measures the activity of the sample over a period of 5.0 days. She then plots the graph shown in Fig. 2.1 of the variation with time of the activity of the sample.

Fig. 2.1

(i)	Find the	half-life ii	n seconds	of the	neptunium	isotope.
-----	----------	--------------	-----------	--------	-----------	----------

(ii) Show that the decay constant of the neptunium isotope is 3.4×10^{-6} s⁻¹.

[1]

[1]

(iii) Deduce the number of nuclei of the neptunium isotope which are present after 2.00 days.

- (c) The physicist then measures the activity of a sample of plutonium-239 over the same period.
 - (i) State the half-life of plutonium-239.

(ii) On Fig. 2.2, sketch the shape of the graph which she might obtain.

Fig. 2.2

[Total: 12]

70	This	s que	stion is about particles and their antiparticles.
	(a)	Stat	e the mass and charge of an <i>antiproton</i> .
		mas	s = kg charge = C [2]
	(b)	Stat	e where an antiproton might be found.
			[1]
	(c)	Whe	en a proton and an antiproton meet, γ-photons are produced.
		(i)	Describe these photons as fully as you can for a slow-moving proton-antiproton collision. No calculation is required.
			[3]
(ii)	dir	ectio	on and an antiproton are moving with almost the same high speed and in the same on. Each possesses $8.00 \times 10^{-11} \text{J}$ of kinetic energy. The two particles meet. ate the frequency of the γ -photons produced.
			frequency =Hz [4]