QUESTION 5

Part (i)

$$x^{2} + y^{2} + kxy + 3x + y = 0 \Rightarrow \left(x + \frac{3}{2}\right)^{2} + \left(y + \frac{1}{2}\right)^{2} = \frac{10}{4}$$
 when $k = 0$

Cuts the coordinate axes at (0,0),(-3,0),(0,-1)

Part (ii)

$$x^{2} + y^{2} + kxy + 3x + y = 0 \Rightarrow (3x + y)(x + 3y) + 3(3x + y) = 0 \text{ when } k = \frac{10}{3}$$
$$\Rightarrow (3x + y)(x + 3y + 3) = 0$$

Cuts the coordinate axes (0,0),(0,-1),(-3,0)

Part (iii)

With
$$\theta = 45^{\circ}$$
, $X = \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y$, $Y = -\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y \Rightarrow X + Y = \sqrt{2}y$, $X - Y = \sqrt{2}x$

Putting k = 2 and substituting we have

$$\frac{(X-Y)^2}{2} + \frac{(X+Y)^2}{2} + (X-Y)(X+Y) + \frac{3}{\sqrt{2}}(X-Y) + \frac{1}{\sqrt{2}}(X+Y) = 0$$

$$\Rightarrow 4X^2 + 4\sqrt{2}X - 2\sqrt{2}Y = 0$$

$$\Rightarrow 2X^2 + 2\sqrt{2}X - \sqrt{2}Y = 0$$

$$\Rightarrow \sqrt{2}Y = (\sqrt{2}X+1)^2 - 1$$

Differentiating
$$\sqrt{2} \frac{dY}{dX} = 2\sqrt{2} \left(\sqrt{2}X + 1 \right) \Rightarrow \frac{dY}{dX} = 2 \left(\sqrt{2}X + 1 \right) \Rightarrow \frac{dY}{dX} = 0$$
 when $X = -\frac{1}{\sqrt{2}}$

Clearly the line of symmetry is $X = -\frac{1}{\sqrt{2}}$

When this is rotated through 45° anticlockwise about the origin it becomes the line:-

$$y + x + 1 = 0$$

The Red curve is
$$\sqrt{2}Y = (\sqrt{2}X + 1)^2 - 1$$

The Blue curve is the red curve rotated about the origin through 45° anticlockwise so that it is the original curve.

The green curve is the line y + x + 1 = 0.