DERIVATIVE TEST FOR A POINT OF INFLECTION.

THEOREM:

If the graph of f(x) has an inflection point at x_0 , and $f''(x_0)$ exists in an open interval containing x_0 , and f'' is continuous at x_0 , then $f''(x_0) = 0$

However, the converse of this is not true - i.e. it's true that if x_0 is an inflection point, then $f''(x_0) = 0$

it's not true (generally) that if $f''(x_0) = 0$ then $f(x_0)$ is an inflection point.

Here is how you can tell a point is DEFINITELY an inflection point:

If
$$f'(x_0) = 0$$
 and $f^{(n+1)}(x_0) \neq 0$ for some n=2k, $k \in \mathbb{Z}$

then, there is an inflection point at $(x_0, f(x_0))$

OR:

Let f(x) be a real valued differentiable function, on an interval within \mathbb{R} , an n (1) an integer.

If
$$f'(c) = f''(c) = f'''(c) = \dots f^{(n)}(c) = 0$$

and $f^{(n+1)}(c) \neq 0$, then either:

1) n is odd and:

 $f^{(n+1)}(c) < 0 \implies x = c$ is a relative maximum.

or

 $f^{(n+1)}(c) > 0 \implies x = c$ is a relative minimum.

OR:

2) n is even, and:

 $f^{(n+1)}(c) < 0 \implies x = c$ is a strictly decreasing point of inflection.

 $f^{(n+1)}(c) > 0 \implies x = c$ is a strictly increasing point of inflection.