DERIVATIVE TEST FOR A POINT OF INFLECTION.
 THEOREM:

If the graph of $f(x)$ has an inflection point at x_{0}, and $f^{\prime \prime}\left(x_{0}\right)$ exists in an open interval containing x_{0}, and $f^{\prime \prime}$ is continuous at x_{0}, then $f^{\prime \prime}\left(x_{0}\right)=0$

However, the converse of this is not true - i.e. it's true that if x_{0} is an inflection point, then $f^{\prime \prime}\left(x_{0}\right)=0$ it's not true (generally) that if $f^{\prime \prime}\left(x_{0}\right)=0$ then $f\left(x_{0}\right)$ is an inflection point.

Here is how you can tell a point is DEFINITELY an inflection point:

$$
\text { If } f^{\prime \prime}\left(x_{0}\right)=0 \text { and } f^{(n+1)}\left(x_{0}\right) \neq 0 \text { for some } n=2 k, k \in \mathbb{Z}
$$

$$
\text { then, there is an inflection point at }\left(x_{0}, f\left(x_{0}\right)\right)
$$

OR:

Let $f(x)$ be a real valued differentiable function, on an interval within \mathbb{R}, an n (1) an integer.

$$
\begin{aligned}
& \text { If } f^{\prime}(c)=f^{\prime \prime}(c)=f^{\prime} '^{\prime}(c)=\ldots f^{(n)}(\boldsymbol{c})=0 \\
& \quad \text { and } f^{\{n+1)}(c) \neq 0 \text {, then either: }
\end{aligned}
$$

1) n is odd and:

$$
\begin{gathered}
f^{(n+1)}(c)<0 \Rightarrow \boldsymbol{x}=\boldsymbol{c} \text { is a relative maximum. } \\
\text { or } \\
f^{(n+1)}(c)>0 \Rightarrow \boldsymbol{x}=\boldsymbol{c} \text { is a relative minimum. }
\end{gathered}
$$

OR:

2) n is even, and:

$$
f^{(n+1)}(c)<0 \Rightarrow \boldsymbol{x}=\boldsymbol{c} \text { is a stricly decreasing point of inflection. }
$$

$$
f^{(n+1)}(c)>0 \Rightarrow \boldsymbol{x}=\boldsymbol{c} \text { is a stricly increasing point of inflection. }
$$

