General Certificate of Education (A-level) June 2013

Physics A
PHA5B
(Specification 2450)
Unit 5B: Nuclear and Thermal Physics
Medical Physics

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: $\underline{\text { aqa.org.uk }}$
Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Section A - Nuclear and Thermal Physics

Question	Part	Sub Part	Marking Guidance	Mark	Comments
1	(a)	(i)	1/12 the mass of an (atom) of ${ }_{6}^{12} \mathrm{C} /$ carbon-12 / C12 \checkmark	1	a reference to a nucleus loses the mark
1	(a)	(ii)	separated nucleons have a greater mass \checkmark (than when inside a nucleus) because of the (binding) energy added to separate the nucleons or energy is released when a nucleus is formed (owtte)	2	an answer starting with 'its' implies the nucleus marks are independent direction of energy flow or work done must be explicit
1	(b)		nuclei need to be close together (owtte) for the Strong Nuclear Force to be involved or for fusion to take place \checkmark but the electrostatic/electromagnetic force is repulsive (and tries to prevent this) (if the temperature is high then) the nuclei have (high) kinetic energy/speed (to overcome the repulsion)	3	e.g. first mark - within the range of the SNF $3^{\text {rd }}$ mark is for a simple link between temperature and speed/KE
1	(c)	(i)	$\begin{aligned} & 15 \checkmark \\ & \mathrm{e}^{+} \checkmark\left(\text { or } \beta^{+},{ }_{1}^{0} \beta,{ }_{1}^{0} \mathrm{e}\right) \\ & 12 \checkmark \end{aligned}$	3	give the middle mark easily for any e or β with a + in any position

1	(c)	(ii)	```or \Deltamass ={4\times1.00728-4.00150-2\times0.00055}(u)\checkmark \Deltamass = 0.02652(u)\checkmark \Deltabinding energy (= 0.02652 > 931.5) {allow 931.3} bbinding energy = 24.7 MeV```	3	(4×1.00728=4.02912) $1^{\text {st }}$ mark - correct subtractions in any consistent unit. use of $\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$ will gain this mark but will not gain the $2^{\text {nd }}$ as it will not produce an accurate enough result $2^{\text {nd }}$ mark - for calculated value $0.02652 u$ $4.405 \times 10^{-29} \mathrm{~kg}$ $3.364 \times 10^{-12} \mathrm{~J}$ $3^{\text {rd }}$ mark - conversion to Mev conversion mark stands alone award 3 marks for answer provided some working shown - no working gets 2 marks (2sf expected)

			insert control rods (further) into the nuclear core/reactor \checkmark which will absorb (more) neutrons (reducing further fission reactions) \checkmark

	a
2	m
	all
	w
	If
	no

a change must be implied for 2 marks marks by use of (further) or (more) allow answers that discuss shut down as well as power reduction
If a statement is made that is wrong but not asked for limit the score to 1 mark (e.g. wrong reference to moderator)

2	(b)		fission fragments/daughter products or spent/used fuel/uranium rods (allow) plutonium (produced from U-238) \checkmark	1	not uranium on its own
2	(c)	(i)	γ (electromagnetic radiation is emitted) \checkmark as the energy gaps are large (in a nucleus) as the nucleus de-excites down discrete energy levels to allow the nucleus to get to the ground level/state \checkmark mark for reason	A reference to α or β loses this first mark $2^{\text {nd }}$ mark must imply energy levels or states	

2	(c)	(ii)	momentum/kinetic energy is transferred (to the moderator atoms) or a neutron slows down/loses kinetic energy (with each collision) \checkmark (eventually) reaching speeds associated with thermal random motion or reaches speeds which can cause fission (owtte) \checkmark	2	

3		(i)	$\begin{aligned} & \text { (heat supplied by glass = heat gained by cola) } \\ & \text { (use of } m_{\mathrm{g}} c_{\mathrm{g}} \Delta T_{\mathrm{g}}=m_{\mathrm{c}} c_{\mathrm{c}} \Delta T_{\mathrm{c}} \text {) } \\ & 0.250 \times 840 \times\left(30.0-T_{\mathrm{f}}\right)=0.200 \times 4190 \times\left(T_{\mathrm{f}}-3.0\right) \\ & \left(210 \times 30-210 t_{\mathrm{f}}=838 T_{\mathrm{f}}-838 \times 3\right) \\ & T_{\mathrm{f}}=8.4(1)\left({ }^{\circ} \mathrm{C}\right) \checkmark \end{aligned}$	2	$1^{\text {st }}$ mark for RHS or LHS of substituted equation $2^{\text {nd }}$ mark for $8.4^{\circ} \mathrm{C}$ Alternatives: $8^{\circ} \mathrm{C}$ is substituted into equation (on either side shown will get mark) \checkmark resulting in 4620J~4190J \checkmark or $8^{\circ} \mathrm{C}$ substituted into LHS \checkmark (produces ΔT $=5.5^{\circ} \mathrm{C}$ and hence) $=8.5^{\circ} \mathrm{C} \sim 8^{\circ} \mathrm{C}$ $8^{\circ} \mathrm{C}$ substituted into RHS \checkmark (produces $\Delta T=20^{\circ} \mathrm{C}$ and hence) $=10^{\circ} \mathrm{C} \sim 8^{\circ} \mathrm{C}$

3		(ii)	```(heat gained by ice \(=\) heat lost by glass + heat lost by cola) (heat gained by ice \(=m c \Delta T+m l\)) heat gained by ice \(=m \times 4190 \times 3.0+m \times 3.34 \times 10^{5} \checkmark\) (heat gained by ice \(=m \times 346600\)) heat lost by glass + heat lost by cola \(=0.250 \times 840 \times(8.41-3.0)+0.200 \times 4190 \times(8.41-3.0) \checkmark\) (= 5670 J) \(m(=5670 / 346600)=0.016(\mathrm{~kg}) \checkmark\) or (using cola returning to its original temperature) (heat supplied by glass = heat gained by ice) (heat gained by glass \(=0.250 \times 840 \times(30.0-3.0)\)) heat gained by glass \(=5670(\mathrm{~J}) \checkmark\) (heat used by ice \(=m c \Delta T+m I\)) heat used by ice \(=m\left(4190 \times 3.0+3.34 \times 10^{5}\right) \checkmark(=m(346600))\) \(m(=5670 / 346600)=0.016(\mathrm{~kg}) \checkmark\)```	3	NB correct answer does not necessarily get full marks $3^{\text {rd }}$ mark is only given if the previous 2 marks are awarded (especially look for $m \times 4190 \times 3.0)$ the first two marks are given for the formation of the substituted equation not the calculated values if $8^{\circ} \mathrm{C}$ is used the final answer is 0.015 kg

| | | | molecules have negligible volume
 collisions are elastic
 the gas cannot be liquified
 there are no interactions between molecules (except during
 collisions)
 the gas obeys the (ideal) gas law / obeys Boyles law etc.
 at all temperatures/pressures
 any two lines $\checkmark \checkmark$ | a gas laws may be given as a formula |
| :--- | :---: | :---: | :--- | :---: | :---: | :---: |
| 4 | (a) | 2 | | |
| 4 | (b) | (i) | $n(=P V / R T)=1.60 \times 10^{6} \times 0.200 /(8.31 \times(273+22)) \checkmark$
 $(130$ or $131 \mathrm{~mol} \checkmark$ | (130) |

4	(b)	(ii)	```mass = 130.5 }\times0.043=5.6(kg (5.61kg) density (= mass/volume) = 5.61/0.200=28\checkmark(28.1 kg m kg m```	3	allow ecf from bi a numerical answer without working can gain the first two marks
4	(b)	(iii)	$\begin{aligned} & \left(V_{2}=P_{1} V_{1} T_{2} / P_{2} T_{1}\right) \\ & V_{2}=1.6 \times 10^{6} \times .200 \times(273-50) / 3.6 \times 10^{4} \times(273+22) \text { or } 6.7(2) \\ & \left(\mathrm{m}^{3}\right)^{\checkmark} \\ & \text { mass remaining }=5.61 \times 0.20 / 6.72=0.17(\mathrm{~kg}) \checkmark(0.167 \mathrm{~kg}) \\ & \text { or } \\ & n=\left(P V / R T=3.6 \times 10^{4} \times 0.200 /(8.31 \times(273-50))=3.88(5)(\mathrm{mol})\right. \\ & \checkmark \\ & \text { mass remaining }=3.885 \times 4.3 \times 10^{-2}=0.17(\mathrm{~kg}) \checkmark \\ & 2 \text { sig figs } \checkmark \end{aligned}$	3	allow ecf from bii [reminder must see bii] look out for any 2 sf answer gets the mark

$\left.\begin{array}{|c|c|l|l|l|}\hline 5 & & \begin{array}{l}\text { The mark scheme for this part of the question includes an overall } \\ \text { assessment for the Quality of Written Communication (QWC). }\end{array} & & \\ \hline & \text { QWC } & \begin{array}{c}\text { Descriptor } \\ \text { (Good to } \\ \text { excellent) }\end{array} & \begin{array}{l}\text { The candidate refers to all the necessary apparatus and records the } \\ \text { count-rate at various distances (or thicknesses of absorber). The } \\ \text { background is accounted for and a safety precaution is taken. The } \\ \text { presence of an } \alpha \text { source is deduced from the rapid fall in the count } \\ \text { rate at } 2-5 \mathrm{~cm} \text { in air. The presence of a } \gamma \text { source is deduced from } \\ \text { the existence of a count-rate above background beyond } 30-50 \mathrm{~cm} \text { in } \\ \text { air (or a range in any absorber greater than that of beta particles, e.g. } \\ 3-6 \text { mm in Al) or from the intensity in air falling as an inverse square } \\ \text { of distance or from an exponential fall with the thickness of a material } \\ \text { e.g. lead. The information should be well organised using appropriate } \\ \text { specialist vocabulary. There should only be one or two spelling or } \\ \text { grammatical errors for this mark. }\end{array} & 5-6\end{array} \quad \begin{array}{l}\text { If more than one source is used or a } \\ \text { different experiment than the question set } \\ \text { is answered limit the mark to 4 }\end{array}\right\}$

	Intermediate Level (Modest to adequate)	The candidate refers to all the necessary apparatus and records the count-rate at different distances (or thicknesses of absorber). A safety precaution is stated. The presence of an α source is deduced from the rapid fall in the count rate at $2-5 \mathrm{~cm}$ in air and the γ source is deduced from the existence of a count-rate beyond $30-50 \mathrm{~cm}$ in air (or appropriate range in any absorber, e.g. $3-6 \mathrm{~mm}$ in Al). Some safety aspect is described. One other aspect of the experiment is given such as the background. The grammar and spelling may have a few shortcomings but the ideas must be clear.	3-4	To get an idea of where to place candidate look for 6 items: 1. Background which must be used in some way either for a comparison or subtracted appropriately 2.Recording some data with a named instrument
	Low Level (Poor to limited)	The candidate describes recording some results at different distances (or thicknesses of absorber) and gives some indication of how the presence of α or γ may be deduced from their range. Some attempt is made to cover another aspect of the experiment, which might be safety or background. There may be many grammatical and spelling errors and the information may be poorly organised.	1-2	3.Safety reference appropriate to a school setting - not lead lined gown for example 4.Record data with more than one absorber or distances 5. α source determined from results taken 6. γ source determined
		The description expected in a competent answer should include a coherent selection of the following points. apparatus: source, lead screen, ruler, γ ray and α particle detector such as a Geiger Muller tube, rate-meter or counter and stopwatch, named absorber of varying thicknesses may be used. safety: examples include, do not have source out of storage longer than necessary, use long tongs, use a lead screen between source and experimenter. measurements: with no source present switch on the counter for a fixed period measured by the stopwatch and record the number of counts or record the rate-meter reading with the source present measure and record the distance between the source and detector (or thickness of absorber) then switch on the counter for a fixed period measured by the stopwatch and record the number of counts or record the rate-meter reading repeat the readings for different distances (or thicknesses of absorber).		from results taken this is a harder mark to achieve it may involve establishing an inverse square fall in intensity in air or an exponential fall using thicknesses of lead if a continuous distribution is not used an absorber or distance in air that would just eliminate β ($30-50 \mathrm{~cm}$ air / $3-6 \mathrm{~mm} \mathrm{Al}$) must be used with and without the source being present or compared to background

	use of measurements: for each count find the rate by dividing by the time if a rate-meter was not used subtract the background count-rate from each measured count-rate to obtain the corrected count-rate longer recording times may be used at longer distances (or thickness of absorber). plot a graph of (corrected) count-rate against distance (or thickness of absorber) or refer to tabulated values plot a graph of (corrected) count-rate against reciprocal of distance squared or equivalent linear graph to show inverse square relationship in air analysis: the presence of an α source is shown by a rapid fall in the (corrected) count-rate when the source detector distance is between 2-5 cm in air the presence of a γ source is shown if the corrected count-rate is still present when the source detector distance is greater than 30 cm in air (or at a range beyond that of beta particles in any other absorber, e.g. 3 mm in Al) the presence of a γ source is best shown by the graph of (corrected) count-rate against reciprocal of distance squared being a straight line through the origin		

Section B - Medical Physics

Question	Part	Sub Part	Marking Guidance	Mark	Comments

1	(a)	Only cones at fovea as you move away from fovea fewer cones more rods	2	Allow centre for fovea
1	(b)	three labelled curves blue, green, red in order from left to right \checkmark roughly at correct height \checkmark Green $>$ Red >> Blue each curve covers the correct range of wavelengths Blue 375 to 500; Green 425 to 675 ; Red 475 to 725 (all + or -30 \} \checkmark	3	Green>red>2/3green Blue<1/4green

| 1 | (c) | the two images fall on receptors with at least one (unstimulated) receptor
 between them \checkmark | 1 | Allow 'separated by at least 2 cell
 diameters' |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 1 | (d) | Cones used in bright light, rods used in dim light
 resolution in bright light better because size of cones smaller than size of
 rod: or resolution in dim light worse because several rods connected to 1
 nerve (well away from fovea) | 2 | Do not accept, 'greater density of cones' |
| :---: | :---: | :---: | :--- | :---: | :---: |

			The candidate's writing should be legible and the spelling, punctuation and grammar should be sufficiently accurate for the meaning to be clear. The candidate's answer will be assessed holistically. The answer will be assigned to one of three levels according to the following criteria. Good to Excellent The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question. The candidate explains the principles of transfer of vibrations, from mechanical vibration of the ear drum, through mechanical oscillations of	Mark range	$5-6$

$\left.\begin{array}{|l|l|l|l|l|l|}\hline 2 & \text { (c) } & \begin{array}{l}\text { rearrange equation to give } I=\checkmark \\ \text { correct answer 2.5(12) } \times 10^{-7} \mathrm{~W} \mathrm{~m} \mathrm{~m}^{-2} \checkmark \\ \text { correct to } 2 \text { sig figs } \checkmark\end{array} & 3\end{array}\right\}$

3	(a)	

Alternating potential difference applied across the crystal \checkmark	
causes crystal to expand and contract \checkmark	
creating pressure waves in the crystal / plastic membrane \checkmark	
frequency of alternating pd equal to that of crystal /resonant frequency of	Max
crystal \checkmark	4
which is above $20 \mathrm{kHz} \checkmark$	
short application of ac to produce short pulse \checkmark	
use of backing material to damp and stop vibration of crystal \checkmark	

correct calculation of ratio $I_{r} / I_{i}=0.99896$ subtract from 1 and multiply by 100 to give $0.10 \% ~ \checkmark$

| | | | gel is between the probe and the skin to exclude air \checkmark
 gel should have acoustic impedance equal/close to that of the skin/soft
 tissue \checkmark
 to ensure maximum transmission/greatly increase transmission into the
 body: or to minimise reflection / greatly reduce reflection at body
 boundary \checkmark | Max
 2 | (b) |
| :---: | :---: | :---: | :--- | :--- | :--- |\quad| (ii) |
| :--- |

$\left.\begin{array}{|l|l|l|l|l|l|}\hline 4 & \text { (a) } & & \begin{array}{l}\text { both } \mathrm{mV} \text { and ms labelled as units } \checkmark \\ \text { time scale } 0 \text { to } 5 \text { overall time for peak shape to be }>0.75 \mathrm{~ms} \text { and }<4 \mathrm{~ms} \\ \checkmark \\ \text { potential scale resting -70 to peak }+30 \text {; (allow values between }-90 \text { and - } \\ 70:+20 \text { and }+40 \text {) } \checkmark\end{array} & 3\end{array} \quad \begin{array}{l}\text { Allow any correct units, but then values on } \\ \text { scales must match }\end{array}\right\}$

4	(b)	(i)	-70mV \checkmark	1	Ecf from graph
4	(b)	(ii)	Depolarisation Na^{+}ions into the membrane/cell/axon	2	Need positive sodium ions
4	(b)	(iii)	Repolarisation K^{+}ions out of the membrane/cell/axon	2	Need positive potassium ions

