
Further Concepts for Advanced Mathematics FP1
Proof
There are three main techniques of proof used in Mathematics
(i) A logical sequence of steps leading from some known fact to conclude with what we wish to prove.
(ii) Proof by contradiction. ie, showing that the assumption that a statement is false leads to a
mathematical contradiction.
(iii) Proof by induction .
The first two cases were dealt with earlier in the course.
Proof by induction

Suppose that P(n) is a statement concerning the natural number n, i.e. P(n) is a function whose
domain is  Œ, the set of natural numbers.
The PRINCIPLE OF MATHEMATICAL INDUCTION states that if
(i) P(n0 ) is true for some n0  Œ and (ii) P(k)  P(k  1) for any k  n0, then P(n) is true for all n  n0
Proof:  If the above is not true then there exists a subset of the natural numbers consisting of those
numbers greater than  ,n0 for which P(n) is false. By the well-ordering property of the natural numbers
This subset has least member m say. i.e. , sincem  n0 and P(m) is false. However, P(m  1) must be true
m is the least member of the subset and then, by the principle of induction P  contradicting them is true
assumption that it is false. Hence, no such subset can exist.
Ex. Prove that for all n  Œ, 

r1

n
r  1

2 nn  1

Let Pn be the statement that 
r1

n
r  1

2 nn  1

When n  1, 
r1

n
r  1 and 1

2 nn  1  1
2  1  2  1 so P(1) is true.

Assume Pk true, i.e. 
r1

k
r  1

2 kk  1 then 
r1

k1
r  1

2 kk  1  k  1  1
2 k  1k  2

But this is P(k  1) so P(k)  P(k  1 and hence P(n) is true for all n  Œ by induction on n
Another important use for the induction method of proof is to test divisibility statements.
Ex. Prove that 13n  6n2 is divisible by 7 for all positive integers greater than m, wher m is to be
found.
Let f(n)  13n  6n2 then f1  13  61 which is not an integer.

 so f(2) is divisible by 7 so we take m = 2.f2  132  60  169  1  168  7  26
Assume now that  f(k)  13k  6k2  7X where X is an integer, for some k  2
Now f(k  1)  13k1  6k1  1313k  6k2  13  6k2  6k1

 13  7X  6k213  6  713k  6k2
And since 13k  6k2 is an integer for k  2 it follows that f(k  1) is divisible by 7.
Hence, true for n  k  true for n  k  1 and the result follow for all n  2 by induction on n.
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Sequences and Series
A function whose domain is the set of natural numbers is called  a SEQUENCE. The elements of the
range of the function are the TERMS of the sequence. There are two common methods of defining a
sequence
(1) By giving a formula for the general term. Which again is done in one of two ways.
Ex.  defines the sequence 1, 3, 5, 7, ...fn  2n  1
Ex.  defines the sequence 0, 7, 26, 63, ...n3  1
(2) By expressing the   term in terms of the previous term or sometimes the previous twonth or n  1 th

terms.  is commonly used to denote the  term of a sequence.un n th

Ex.  with  defines the sequence 1, 1, 2, 6, 24, ...un1  nun u1  1
Ex.  defines the sequence 1, 1, 2, 5, 13, ...un1  3un  un1

These are called RECURRENCE RELATIONS
Series
The sum of the first n terms of a sequence forms a FINITE SERIES. If all the terms of a sequence are
added we have an INFINITE SERIES
e.g.  is a finite series of six terms.1  2  4  8  16  32

 is an INFINITE SERIES1  2  4  8  16  32  ...  2n  ...
Behaviour of series
Sequences and series may behave in a number of ways as the number of terms increase. The sum of the
series may
(i) Tend to some finite limiting value. We say that it CONVERGES to that value
(ii) Increase in size without limit. We say it DIVERGES
(iii) OSCILLATE between finite or infinite limits.
(iv) Display PERIODICITY. i.e the same sequence of values repeat at regular intervals.

Ex. (i)  converges to the value 2. We say the sum to infinity is 21 1
2 

1
4 ... 1

2n1  ...
(ii)  diverges. The sum tends to infinity.1  2  4  8  16  ...  2n  ...
(iii)  oscillates1  2  4  8  16  ...
(iv)  displays periodicity1  1n  2, 0, 2, 0, ...
Note that a sequence is a collection of numbers whereas a finite series has a unique finite numerical value.
An infinite series may or may not have a finite value.
We may occasionally relax the requirement that the domain of our function be the set of natural numbers
and allow integer values or omit the first few values. We commonly use the sigma notation when dealing

with series. i.e.  which means that we add together the values of  for all integer values of r
r1

n
fr fr

between 1 and n inclusive.

Ex. (i) (ii) 
r1

r4
r  1  2  3  4  10 

1

5
3r  1  2  5  8  11  14  40

Note also that we often omit the  when it can cause no confusion.r 

(iii) 
3

6
r2  5  4  111  20  31  66

Note also that the same series may be defined in many different ways

Ex.  etc.
1

n
rr  1  

0

n1
rr  1  

2

n1
r  1r  2
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Summation of Finite Series
We have previously met three special series, the arithmetic, geometric and binomial series.
We now consider some special techniques.
Sums of Powers of Natural Numbers
We already know that 

r1

n
r  1

2 nn  1 and 
r1

n
r2  1

6 nn  12n  1

The first result is immediate from the sum of an arithmetic series whilst the second may be obtained as
follows: (r  1)3  r3  3r2  3r  1  r2  1

3 (r  1)3  r3  3r  1

 
r1

n
r3  1

3 
r1

n
(r  1)3  r3  3

r1

n
r  n  1

3 (n  13  1  3
2 nn  1  n)

 1
3 nn  12n  12  3n  2  1

6 n  1(2n2  n)  1
6 nn  12n  1

Similarly, starting with the identity (r  14  r4  4r3  6r2  4r  1 we can deduce the sum of the
cubes of the natural numbers. This is left as an exercise.
These results can be use to sum other series.
Ex Find the sum of n terms of 1  1  2  3  3  5  4  7  ...  n2n  1
As the rth term is r2r  1 we have Sn  

r1

n
r2r  1  2

r1

n
r2 

r1

n
r

 1
3 nn  12n  1  1

2 nn  1  1
6 nn  1(22n  1  3)  1

6 nn  14n  1
The Method of Differences.
If, for each r, we can write the rth term of a series in the form f(r  1)  f(r) then Sn  f(n  1)  f(1)

Ex Prove that 
r1

n
r  1

2 nn  1

As an alternative to using the sum of an arithmetic series, note that r  1
2 [rr  1  r  1r]

i.e. r f(r  1) f(r) where f(r)  1
2 r  1r, hence, 

r1

n
r f(n  1) f(1)  1

2 n  1n since f(1)  0

Ex  Find the sum of 1
12 

1
23  ...  1

nn1
By partial fractions 1

nn1 
1
n  1

n1  f(n)  f(n  1)  [f(n  1)  f(n)] where f(n)  1
n

hence, 
r1

n
1

nn1  f(1)  f(n  1)  1  1
n1  n

n1

Sometimes a series can be reduced to a standard recognisable form.
Ex  Find the sum of x  2x2  3x3  ...  nxn

If Sn  x  2x2  3x3  ...  nxn then xSn  x2  2x3  3x4  ...  nxn1

so by subtraction Sn  xSn  x  x2  x3  ...  xn  nxn1  x(1xn )
1x  nxn1 (by sum of G.P)

i.e. Sn 
x[1xnnxn1x]

1x  x(11nxnnxn1 )
1x
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Complex Numbers
Though the number system has already been extended in many ways, starting with the natural numbers,
through the integers and rational numbers to the real number system, there are still many quite simple
equations which have no solutions within this system, e.g. x2  2  0, sin x  2, 10x  5 etc
Consider quadratic equations, we know that the general quadratic ax2  bx  c  0 has solutions
x  1

2a b  b2  4ac and that there are no real roots if b2  4ac  0
Suppose now that  so we may write theb2  4ac  k  k1 where k  0, then b2  4ac  k 1
solutions as x  p  q 1
Let us now introduce  a special symbol to denote 1 . We shall use j (though i is also often used)
Thus, if the roots of a quadratic equation are not real, we may write x  p  qj
We define a COMPLEX NUMBER to be a number of the form a  bj where a and b are real, the  sign
being merely a means of linking the two parts of the number together.
“a” is called the REAL part and “b” the IMAGINARY part of the number, hence if  thenz  a  bj

. Note that the imaginary part of a complex number is real, since it is theRe(z)  a and Im(z)  b
coefficient of j and does not include j itself. 
Manipulation of complex numbers
Operations on complex numbers are defined as follows by assuming the usual properties of numbers to
hold together with the assumption that j2  1
thus:    Equality a  bj c  dj  a  c and b  d

Addition/subtraction        a  bj  c  dj  a  c  b  dj
Multiplication            a  bjc  dj  ac  bc  adjbd  ac  bd  bc  adj
Division  Since a  bja  bj  a2  b2 we have abj

cdj 
abj
cdj 

cdj
cdj 

acbdbcadj
c2d2

from these definitions we can see that the complex numbers of the form  behave in exactly the samea  0j
way as the real numbers and it is usual to omit the . Similarly, purely imaginary numbers 0j 0  bj
are usually written simply as bj.

If z  a  bj, then the multiplicative inverse z1 of z is given by z1  1
abj 

abj
a2b2 providing z  0

The number z  a  bj is called the COMPLEX CONJUGATE (or simply the conjugate) of z
The real number z  a2  b2 is called the MODULUS of z, thus z1  z

z 2 or z 2  z
z1  zz

Some important results concerning complex conjugates are:
If z1  x1  y1j and z2  x2  y2j with z2  0 then

 and z1  z2  z1
  z2

; (z1z2  z1
z2
; ( z1

z2 )  z1


z2
 ; z1  z1

  2Re(z1 ) z1 z1
 2jIm(z1)

these results are most important and should be memorised
The square root of a complex number
The method is explained by an example.
Ex Find 21  20j
Let 21  20j a  bj2  a2  b2  2abj then we must have a2  b2  21 and 2ab  20
It is fairly obvious, by inspection, that the possible solutions are  If youa  5, b  2 and a  5, b  2
cannot ”see” these solutions then you must solve  simultaneously.a2  b2  21 and 2ab  20
Thus we have . Note that since the complex numbers do not form an21  20j  5  2j or 5  2j
‘ordered’ set, we cannot say that one of these roots is positive and the other negative.
Consider the polynomial equation  It can be provedanxn n1 xn1  ...  a1x  a0  0 with all a i real.
that such an equation always has at least one root in .  Remember that Š, the set of complex numbers
Š contains ‘. Let such a root be z  a  bj. then anzn n1 zn1  ...  a1z  a0  0
Taking the complex conjugate of both sides and using the standard results given above we have, since 

 a i
  a i then anzn

  an1zn1
  ...  a1z  a0  0  z  a  bj is also a root of the equation

Thus, complex roots of a polynomial equation with real coefficients, always occur in conjugate pairs.
What are the important consequences of this ?
Ex Solve the equation z3  z2  4z  6  0 given that 1 j is a root.
If 1 j is a root then so also is 1 j hence z  1 j and z  1 j are factors of the polynomial
and hence so is z  1  jz  1  j  z  1  jz  1  j  z  12  1  z2  2z  2
and so  z3  z2  4z  6  z2  2z  2z  3 and the solutions are z  1 j, 1 j or 3
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The Argand Diagram
Since a complex number is essentially just an ordered pair of real numbers there is a natural one-to-one
correspondence between complex numbers and points in a plane defined by the mapping x  yj x, y
Points on the x-axis correspond to the real numbers and points on the y-axis to the purely imaginary
numbers and so we refer to the real and imaginary axes.
Such a representation of the complex numbers is known as the COMPLEX PLANE or the ARGAND
DIAGRAM (J.R.Argand 1768-1822)
The point Px, y corresponding to z  x  yj is called the AFFIX of z
The Argand diagram gives us an alternative interpretation of j , not as a number, but an operator, an
instruction to perform a certain geometrical transformation.
Let under  az  a  bj be any complex number with affix P. Then jz  ajb with affix P is the image of P
positive (anti-clockwise) rotation of . Thus j can be interpreted as an operator which90o about the origin
causes a positive 90o rotation about the origin.
It should be obvious from the definition of addition/subtraction that in the Argand diagram it is exactly
the same as adding/subtracting vectors. The MODULUS which has already been defined can now be seen
to be the distance of the affix of a number from the origin. Before considering multiplication and division
in the Argand diagram we need to introduce the concept of the ARGUMENT of a complex number.
The position vector of the point representing a complex number z in the Argand diagram can be described
by means of its length r and the angle   that it makes with the positive real axis.
r is of course z the modulus of z. The angle , which is measured anticlockwise from the positive real
axis, usually in radians, is not however uniquely defined since adding any multiple of  will give the2
same direction. It is usual therefore to take that value of  which is called the for which     ,
PRINCIPAL ARGUMENT of  z, denoted by arg z
If argz   we have z  r cos  r sinj
ie z  rcos jsin where tan  Im(z

Re(z
This is the MODULUS-ARGUMENT or POLAR form of z.
Ex. (i) 1 j rcos jsin  r  2 , tan  1    

4
so  1 j 2 (cos 

4  j sin 
4 )

(ii) 3  4j 5cos  jsin where tan   4
3 and  2    0

Be sure to get the correct quadrant for the argument.
Consider now z1  r1cos1 jsin1 and z2  r2cos2 jsin2
Then z1z2  r1r2(cos 1  j sin1 )cos2 jsin2

       r1r2cos 1 cos2  sin1 sin2 jsin1 cos2  cos1 sin2
       r1r2cos1  2 jsin1  2

Thus z1z2  z1 z2 and argz1z2  argz1  argz2  2
Similarly, z1

z2  z1
z2

and arg( z1
z2 )  argz1  argz2  2

Note that the 2 may be necessary in order to give a principal
argument.
Geometrically therefore, multiplication by z enlarges by a factor
 z and rotates through an angle arg z
This is called a SPIRAL DILATION.
In the diagram, I, P1 and P2 are the affixes of 1, z1 and z2
respectively. If each side of OIP1 is enlarged by a
factor z2 and the triangle rotated through an angle argz2
then  thenI is mapped onto P2. Let P3 be the image of P1
  s OIP1 and OP2P3 are similar and thus

 OP3  z2 OP1  z2 z1 and IÔP3argz1argz2

and hence, P3 is the affix of z1z2
Thus, to construct  similar to z1z2 we draw on OP2, a triangle OIP1, making OP2 correspond to OI
Simple loci in the Argand diagram
From the connection between complex numbers and vectors we see that   z1 z2 is the distance
between the points representing the complex numbers Thus if z1 and z2. A, B and P represent the
complex constants a, b and the complex variable z then

5

P  z(  )

x

y



r

P3 (       )z z1  2
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(i) if z  a  k where k is real, the locus of P is a circle, centre A and radius k.
(ii) if  z  a  z  b then the locus of P is the perpendicular bisector of AB
(iii) if z  a  k z  b k  1 then the locus of P is a circle.
We prove this last result. Let z  x jy, a  a1 ja2 and b  b1 jb2
then z  a  k z  b  x  a1  jy  a2  k x  b1  jy  b2
 (x  a1 )2  (y  a2 )2  k2 (x  b1 )2  (y  b2 )2

 x2  y2  2a1x  2a2y  a1
2  a2

2  k2(x2  y2  2b1x  2b2y  b1
2  b2

2 )
 k2  1x2  y2  2a1  k2b1x  2a2  k2b2y  k2b1

2  b2
2  (a1

2  a2
2 )  0

and dividing by  (since  which is thek2  1  1 gives an equation of the form x2  y2  2gx  2f y  c  0
equation of a circle.
The centre of the circle is at  which is the pointg,f i.e. the point representing k2b1a1

k21 j k2b2a2
k21  k2ba

k21
dividing AB externally in the ratio k2 : 1
(iv) if argz  a  . where  is real, the locus of P is the half-line from A, (excluding A itself)
proceeding in the direction , measured from the real axis.
(v) if from BParg za

zb  , the locus of P is a circular arc from A to B such that APB  , measured
to AP.
(iv) and (v) are illustrated in the following diagrams.

1
3

             A 2  j

       2
3

          A 3  j 1  2j B

argz  3  j  2
3  arg z2j

z12j  1
3

6
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x
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Matrices
A MATRIX is an ordered rectangular array of numbers. Matrices are classified by the number of rows
and columns, the ORDER of the matrix. Thus a matrix with 4 rows and 3 columns is said to be a 4  3
Matrix, read as “four-by-three”. We usually use capital letters printed in heavy type in examination papers
and most text books, to represent matrices except when the matrix consists of a single column when
standard vector notation tends to be used, since a vector may be considered to be an  matrix.n  1
Arbitrary elements of a matrix are denoted by small letters often with one or two suffixes as in the
following examples.

Ex. A    C 
1 3 5
4 1 2 B 

a1 a2 a3

b1 b2 b3


a11 a12 a13

a21 a22 a23

a31 a32 a33

A and B are .2  3 matrices and C is a 3  3 matrix
Algebra of matrices.
Let A  (a ij), B  (b ij), C  (c ij) where aij represents the element in row i and column j of A
Equality:  A = B if, and only if, a ij  b ij for every i, j. Clearly A and B must have the same order.
Addition/subtraction: Providing A and B have the same order (are COMPATIBLE) then their sum and
difference will exist and A  B  C where c ij  a ij  b ij for every i, j.
Multiplication by a scalar: k A  (kaij)
Multiplication of matrices: If A has order r  s and B has order s  t then AB will exist and will have
order . We say that A and B are CONFORMABLE for multiplication. Note that the product BA willr  t
only exist when r = t and even then AB and BA will not, in general, be equal. It is important to remember
that matrix multiplication is NOT commutative.

When it exists,  the product AB is defined by AB = C where  i.e. The element in the i-thc ij  
r1

s
a irbrj

row and j-th column of the product AB is the “scalar product” of the i-th row of A and the j-th column of
B. If the product does not exist then the matrices are NON-CONFORMABLE.
A square matrix  is called the IDENTITY matrix of(a ij) of order n with a ii  1 for all i and aij  0 for i  j
order n and denoted by I (or . This matrix always commutes withIn if we wish to emphsise the order)
any square matrix of the same order. i.e. AI = IA = A
Any matrix in which all elements are zero is called a ZERO or NULL matrix and denoted by 0
Note that, unlike in basic algebra, AB = 0 does NOT imply that either A = 0 or B = 0.

Ex.  03 2
0 0

0 0
5 6 

0 0
0 0 

Inverse of a square matrix: If A,B are square matrices of order n and if AB = I, then B is the INVERSE
of A and is more usually denoted by A–1. Note that a matrix always commutes with its inverse,
i.e. AA–1 = A–1A = I
Division : There is no operation of division defined on matrices though a similar effect is obtained by
multiplying by the inverse of a matrix. Thus, AB = C  providing A–1 exists, but remember B = A1C
That you must be very careful with the order of your multiplications. 
Ex. AB  C  B  A1C but we must NOT say B  CA1

Inverse of a 2 x 2 matrix: If A .
a b
c d then

a b
c d  ad  bc is the DETERMINANT of A

Alternative notations for the determinant are det A  or   Providing     A ad  bc  0 the inverse of A will

exist and is given by  does not exist,A1  1
A

d b
c a . You should memorise this pattern. If A1

which is when the determinant is zero, then we say that A is SINGULAR, otherwise A is
NON-SINGULAR
Simultaneous equations.
The simple simultaneous equations 7x  2y  11 and 8x  3y  9, may be written in matrix form as

 of
7 2
8 3

x
y 

11
9 and the inverse of

7 2
8 3 is  1

5
3 2
8 7 hence, pre-multiplying each side

7
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the matrix equation by this inverse we have 1 0
0 1

x
y   1

5
3 2
8 7

11
9 

3
5

Hence, x  3 and y  5.
Matrices and transformations
An important application of matrices is to represent mappings or transformations. The standard
transformations of a plane into itself which leaves the origin invariant, such as reflections in lines through
the origin, rotations about the origin, enlargements with centre at the origin etc, may be represented by 

 matrices. The images of points of the plane are then obtained by pre-multiplying the position vector2  2
of the point by this transformation matrix.

In particular, if T 
a b
c d is the matrix of a transformation, then

T 1
0 

a b
c d

1
0 

a
c and similarly T 0

1 
a b
c d

0
1 

b
d

Remembering this connection between the columns of the matrix and the images of the points (1,0) and
(0,1) is the easiest way of identifying a transformation from its matrix, or of finding the matrix of a given
transformation.
If we interchange the rows and columns of a matrix A we form a new matrix, called the TRANSPOSE of
A, denoted by AT. If A = AT, we say that A is SYMMETRIC, whilst if A = – AT, then A is
SKEW-SYMMETRIC and if AAT = I then A is ORTHOGONAL.
If A is a  Hence every 2  2 matrix, then A + AT is symmetric and A  AT is skew-symmetric.
2  2 matrix can be written as the sum of a symmetric and a skew-symmetric matrix.
A is a symmetric matrix and B is skew-symmetric of the same order. AB is skew-symmetric if, and only
if, AB = BA.
A and B are symmetric matrices of the same order, then AB is symmetric if, and only if,
AB = BA. What can be said about  for any positive integer k?Ak

If A and B are 2  2 matrices, then det(AB) = (detA)(detB)
_____________________________

Invariant points and lines
Points which are mapped onto themselves by a transformation are called INVARIANT points of the
transformation.
INVARIANT lines may be of two types.
(i) POINTWISE INVARIANT lines in which every individual point is mapped onto itself, and
(ii) ordinary invariant lines in which any point of the line is mapped onto a point of the line but not
necessarily the same point.
We illustrate by examples

Ex. Find the invariant points under the transformation given by the matrix 
3 4
1 2

If x
y is the position vector of an invariant point then we must have

3 4
1 2

x
y 

x
y

 3x  4y  x and x  2y  y  2x  4y  0 and x  y  0  x  0, y  0 so only the origin is invariant.

Ex. Find the invariant lines through the origin of the linear transformation with matrix 4 2
5 3

Consider the image of a typical point (k, mk) on the line y  mx
4 2
5 3

k
mk 

4k  2mk
5k  3mk 

4  2mk
5  3mk

Hence the image of the line y  mx is the set of points (4  2mk, 5  3mk) i.e. the line y  53m
42m x

Thus the line y  mx is invariant if 53m
42m  m  2m2  7m  5  0  2m  5m  1  0  m  5

2 or 1
Hence, the invariant lines through the origin are y  x and y  5

2 x

Ex. A transformation is defined by the matrix 
5 2
2 0 . Find the invariant lines.

8
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Any line has an equation of the form y  mx  c with a general point with position vector

This is mapped onto  and we want this point
X

mX  c say.
5 2
2 0

X
mX  c 

5X  2mX  2c
2X

also to be on the line y  mx  c, i.e we require that 2X  m5X  2mX  2c  c
 X2m2  5m  2  c  2mc and if this is to hold for all X, then we must have
2m2  5m  2  c1  2m  0  2m  1m  2  c2m  1  0  m  1

2

Hence, all lines with a gradient of .1
2 , i.e. equations of the form 2y  x  c are invariant

9
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Relations between the coefficients and roots of an equation.
Let the roots of  thenanxn  an1xn1  ...  a1x  a0  0 be 1 , 2 , ..., n

anxn  an1xn1  ...  a1x  a0  anx  1x  2...x  n

Comparing coefficients we have ......
i1

n
 i   a n1

a n 
i,j1

n
 i j 

a n2
a n 

i1

n
i  1n a0

an

where  means the product of
i,j1

n
 i j means the sum of all products of the roots taken in pairs and

i1

n
 i

all the roots. In particular for
(a) ax2  bx  c  0 we have 1  2   b

a and 12  c
a

(b) ax3  bx2  cx  d  0 we have 1  2  3   b
a , 12  23  31  c

a and 123   d
a

Ex. If  Deduce the and  are the roots of ax2  bx  c  0, express   22   in terms of a, b and c.
condition that one root of the equation is double the other. Find also the condition that one root is the
square of the other.
We have  hence,      b

a and   c
a

  22    22  22  5  2  2  9  2b2

a2  9c
a  2b29ac

a2

One root is double the other if either   2 or   2 and in either case   22    0
hence the condition is that 2b2  9ac
Similarly, one root is the square of the other if   22    0
Now   22    3  3  22   and3  3    3  3  
hence,  and so the required condition is  22    ( b

a )3  3  c
a   b

a  ( c
a )2  c

a  b33abcac2a2c
a3

that b3  ac2  a2c  3abc  0
Sums of powers of roots of an equation

In the previous example we required  These could have been found as2  2 and 3  3

follows:
Since  so and  are the roots of ax2  bx  c  0 we have a2  b  c  0 and a2  b  c  0

by addition aS2  bS1  2c  0 where Sn denotes n  n

Thus, since S1   b
a we have aS2  b2

a  2c  0  S2  b22ac
a2

Since neither of the roots is zero, they must also satisfy the equation , hence, putting  ax3  bx2  cx  0
x   and x   and adding as before we have aS3  bS2  cS1  0 so S3 

bS2cS1
a  3abcb3

a3

Ex. Find the sum of the cubes of the roots of the equation x3  2x2  3x  1  0
We cannot find S2 by this new method so must proceed as follows:
If root are ,  and  then       2,       3 and   1
hence, 2  2  2      2  2      4  6  2
Now we can use our new method to give S3  2S2  3S1  3  0  S3  2S2  3S1  3  4  6  3  13
Equations having given roots.

Reversing the earlier procedure, if the roots of an equation are  then we must have 1, 2..., n
x  1x  2...x  n  0  xn  (  i )xn1  (  i j)xn2  ...  1n  i  0
A very common situation is where we are required to find the equation whose roots are symmetrical
functions of the roots of a given equation. The following examples illustrate the technique:
Ex. If , ,  are the roots of x3  3x  2  0, find the equations whose roots are
(i) 2

 , 2
 and 2

 (ii) 2, 2, 2 (iii)   ,   ,   

(i) writing y  2
x we have x  2

y Substituting for x in the given equation will produce an equation with
the desired roots. i.e.  i.e. equation is  ( 2

y )3  3( 2
y )  2  0  8  6y2  2y3  0 2y3  6y2  8  0

(ii) writing y  x2 we have x  y so y y  3 y  2  0  y y  3 y  2  y3  6y2  9y  4
(iii) Since required equation      0 we have     ,      and      so the roots of the
are  ,  and  hence, writing y  x we have x  y and y3  3y  2  0

10
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i.e. equation is y3  3y  2  0
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Curve Sketching
Most of the techniques have been dealt with earlier e.g. Intersections with axes, Stationary points,
Transformations, Use of standard graphs etc.
The first extra technique is the finding of asymptotes. These are lines which the curve approaches but
never actually reaches and are sometimes loosely referred to as ”tangents at infinity”
We consider here the cases of vertical and horizontal asymptotes.
Vertical asymptotes occur for values of x which cannot exist. These are usually values of x which make
the denominator of a rational function zero.
Ex  y  x

(x1)(x2) has vertical asymptotes at x  1 and x  2
Horizontal asymptotes occur when y tends to some finite value as x tends to 
Ex  y  1

x has a horizontal asymptote at y  0 since as x   , y  0

Ex   y  3x2
x1  3 2

x

1 1
x
 3 as x    since 2

x and 1
x both  0 so horizontal asymptote is y  3

The next technique is to investigate the behaviour of the function for large ( or ) values of x
Ex. y  x23x7

x1  xx14x111
x1  x  4  11

x1 but 11
x1  0 for large x so y  x  4

This is in fact an example of an oblique asymptote.
Note however that it is possible for a curve to cross an asymptote at some finite point.
In particular you should be able to easily sketch a quadratic curve by expressing the funcion in
completed square form.
Ex  To sketch y  3x2  6x  2 we note that this may be written as y  3(x  1)2  1
y obviously has a minimum value of 1 when x  1, so x  1 is an axis of symmetry and 1,1 is the
lowest point of the graph.
To summarise, with more complex equations, some or all of the following techniques may be required
1. Inspect for symmetry about the axes.

An even function is symmetrical about the y-axis
An odd function has rotational symmetry of order two
If there are only even powers of y then we have symmetry about the x-axis

2. Check for asymptotes

If y  f(x)
g(x) then g(a)  0  x  a is an asymptote and the curve has a discontinuity at x  a

If y  k as x    then y  k is an asymptote
3. Determine intersections with axes and asymptotes
4. Investigate stationary points
5. Determine any restrictions on the values of x and y by solving for y and x respectively
The following example illustrates these techniques

Ex. (i) y 
xx1

x1
(1) There is no symmetry about either axis (note that ‘negative’ information can be very useful)
(2) x  1 is clearly an asymptote,. also it is clear that y    as x    so there are no asymptotes
parallel to the x-axis. It is however possible to investigate for other asymptotes as follows
y  xx1

x1  x2x
x1  x1x22

x1  x  2  2
x1 which tends to x  2 as x  

Hence, y  x  2 is an asymptote.
It is also helpful to see from which side the curve approaches the asymptote. This often identifies turning
points without the need for differentiation.

Consider the asymptote : if  which will be a largex  1 x  1  h where h is small, then y  1h2h
h

negative number. i.e. as x  1 from the left, y  

12
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Similarly, as  Again, considering  we can see that for x  1 from the right y    y  x  2 x  0, y  x  2
since the largest neglected term is positive, and so the curve tends to this line from above if 
x  0 and similarly from below if x  0
(3) x  0  y  0 but also y  0 when x  1
You should now be able to draw a very good sketch of the graph. Try for yourself and then compare with
the graph below.
(4) It is difficult to differentiate and in view of what we already know it is not necessary.
(5) Again it is not really necessary to look for restrictions but we will do it as an example of the
technique.
It is obvious that y exists for all values of x except x  1
Solving for x in terms of y we have xy  y  x2  x  x2  1  yx  y  0

 x 
y1 1y24y

2  1
2 y  1  1  6y  y2

Clearly, the curve can only exist for values of y such that y2  6y  1  0  y  32  8
i.e. for y  3  8 or y  3  8

           y  x  2

13
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Further Methods for Advanced Mathematics FP2
Polar Coordinates

You are familiar with the representation of a point  in a plane by cartesian coordinates x, y
The position of a point P is also given by its distance r from the origin and the angle  between the x axis
and the line OP. These are the POLAR COORDINATES of P and are defined with respect to an origin
O, called the POLE and a fixed line Ox, called the INITIAL LINE. 
The relation between the cartesian and polar coordinates  of a point P should be obvious.x, y r, 

.x  rcos, and y  rsin, r2  x2  y2 hence, cos  x/r, sin  y/r, tan  y/x and r  x2  y2

Note that it is conventional to take . When sketching a curve, given by a polar equation   r  0 r  f
negative values of f  may occur for some values of . In such cases we use the corresponding positive 
value of f . This is perfectly valid since the same point and add  to (or subtract  from) the value of 
is given by for any integer value of n, leaves the positionr,  and r,   . The addition of 2n to ,
of the point unaltered and so we choose a principal value of . in the range     

The polar coordinates of a point P may be compared with the modulus and argument of the
complex number represented by the point P in the complex plane.
To sketch a curve from a given polar equation we either work out values of r corresponding to simple

v
al
u

es of  such as multiples of 
6 or 

4 or by converting to a cartesian equation.
Ex. Sketch the curve r  2a sin
Method 1. We draw up a table of values.

        

Clearly for values of so describing the curve from  to 2 r will take the corresponding negative values
twice.
Method 2.  which we may recognise to be ther  2a sin  x2  y2 

2ay

x2y2  x2  y2  2ay  0

equation of a circle centre 0, a and radius a.
Sometimes we can do it by simple reasoning rather than working out values. In the case above we could
argue as follows:
As  increases from 0 to /2, r increases from 0 to 2a.
as  increases from /2 to , r decreases from 2a to 0
This certainly tells us that we have a closed curve and one or two actual points should convince us that it
is a circle.
Unless the curve retraces itself when r <  0 as in the case above, it is usual to draw such portion with a
dotted line. 

14
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Areas in Polar Coordinates
 Consider a curve with the polar equation  and let P and P' be adjacent points on the curver f
with polar coordinates  The curve being such that both are increasing asr,  and r  r,   . r and 
we move from P to P.

The area is approximated by the areaA swept out by the radius vector in moving from OP to OP

of the triangle . Ignoring the product ofOPP i.e. A  1
2 rr  r since sin   for small angles

small quantities this gives  and in the limit as A 1
2r2 P  P and both r and  0

dA
d 

1
2 r2 and so, area swept out as  increases from  to  is 




1
2 r2d

Ex. Find the area of the region enclosed by the curve r  3  2 sin
We first sketch the curve.
r has a maximum value of 5 when  and a  1

2

minimum of 1 when  and  when  3
2 r  3   0 or 

so we have a kidney shaped curve as shown.

Area  
0

2
1
2 r2d  2  1

2 
0



9  12 sin  4 sin2d

making use of symmetry.

 
0



9  12 sin  2  2 cos 2d

 [11  12 cos  sin2]0
  11

15




r

r +   r
P

P'

O



3– 3

– 1

5

0
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The Inverse Trigonometric Functions
You will remember that for a function to have an inverse it must be one to one, hence, if the

trigonometric functions are to have inverse functions defined, we must restrict their domains so that they
become one to one functions. The usual restrictions are:
for               for             and for       sinx 1

2 x 1
2 cos x 0  x   tanx 1

2 x 1
2

Note the strict inequality in the last case which is necessary since  is not defined for tanx x1
2

The inverse functions are denoted by the prefix 'arc',  e.g.  arcsin, arccos, arctan etc.  or by using
the index – 1, e.g.  sin1, cos1, tan1 etc. we thus have sin1x  y  siny  x for 1  x  1
cos1x  y  cos y  x for 1  x  1 and tan1x  y  tan y  x for all real x
The graphs of the inverse trigonometric functions are easily obtained by reflecting the graphs of the
trigonometric functions in the line  providing equal scales are used on both axes.y  x

      y  sin1x y  cos1x y  tan1x

Integration using inverse functions
We first consider the derivatives of the inverse trigonometric functions.
y  arcsinx  x  sin y  1  cos y dy

dx (implicit differentiation with respect to x

so 
dy
dx 

1
cosy  1

 1sin2y
 1
 1x2

but from the graph of arcsin x we can see that it has a positive gradient throughout its domain
hence we take only the positive root in the denominator to give d

dx arcsinx  1
1x2

Alternative justification for taking only the positive root is that y  arcsinx   2  y  
2 and so cos x

must be positive.
In a similar manner y  arccos x  cos y  x  dy

dx 
1

sin y  
1

1x2

This time we see that arccosy has a negative gradient throughout
Finally y  arctanx  tany  x  dy

dx 
1

sec2y 
1

1tan2y 
1

1x2

Reversing these results we have 
 1

1x2 dx  arcsin x  c, and  1
1x2 dx  arctanx  c

More generally by making the substitution  we can show that x  a sinx  1
a2x2 dx  arcsin( x

a )  c

and putting x  a tanx we have  1
a2x2 dx  1

a arctan( x
a )  c

Ex. Differentiate (i) sin13x (ii) tan1 x

(i)  (function of a function)  d
dx (arcsin3x)  3  1

13x2
 3

19x2

(ii) d
dx arctan x   1

2 x 
1

1x 
1

2(1x) x

16
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Ex. Evaluate (i) 
0

2
d

42 (ii) 
1/3

2/3
dx

49x 2

(i) 
0

2
d

42  1
2 tan1( 2 )

0
2
 1

2 [tan11  tan10]  1
8 

(ii) 
1/3

2/3
dx

49x2  1
3 

1/3

2/3
dx

4
9 x2

 1
3 [arcsin( 3x

2 )]1/3
2/3  1

3 [sin11 sin1( 1
2 )]  1

3 ( 2 

6 )  

9

Harder Integrals

Integrals of functions of the form  where  Pxdx
ax2bxc Px is a polynomial in x

If Px is of equal or higher degree than the denominator then we perform division until we have a
remainder of lower degree so we need only consider that case. So suppose Px  Ax  B
If logartithmicA  2a and B  b then the numerator is the derivative of the denominator and we have a
integral. Otherwise we write  giving a logarithmic integral and an integral of thePx  k2ax  b  k 

form . We therefore need only consider  k 
ax2bxc dx  1

ax2bxc dx
We do this by completing the square in the denominator to produce one of the following forms.

 The first and third of these may now be done by using partial fractions to dx
X2A2  dx

X2A2 or  dx
A2X2

produce two logarithmic integrals whilst the second case gives an inverse tangent .

Integrals of the form  Again, by similar techniques as before we can reduce the problem to Pxdx
ax2bxc

two types of integral.
 and again, by completing the square inside the square 2axb

ax2bxc
dx  2 ax2  bx  c  k and  dx

ax2bxc

root we obtain one of the following forms:
 dx

A2X2 ,  dx
A2X2 or  dx

X2A2

The first of these gives an inverse sine result. For the second by substituting  we have X  A sec
 dx

d  A sec tan so the integral becomes  A sec tand
A tan   secd  ln sec  tan  k

 ln X
A 

X2A2

A  k  ln X  X2  A2  k 

The third case is dealt with later in this book.

17
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Maclaurin Series
Suppose a function  is expressible as a polynomial in fx x of degree n

i.e.  are all determined if the valuefx  a0  a1x  a2x2  ...  anxn , then the coefficients ai i  0 to n
of , for we then have a set of n + 1fx and all of its derivatives are known for ssome particular value of x
equations in the  which may be solved simultaneously. This is especiallyn  1 unknowns a0, a1, a2, ..., an
easy if the particular value of x is zero for then we immediately have

f0  a0 , fx  a1  2a2x  3a3x2  ...  nanxn1 f0  a1

fx  2a2  2.3a3x  3.4a4x2  ...  n  1nanxn2 f0  2a2

and in general fr0  r!ar  ar  fr0
r!

thus fx f0 f0x  f0
2! x2  ...  fr0

r! xr  ...  fn0
n! xn

To prove that this technique can be extended to an infinite series is beyond the scope of this
course but we will accept it as true providing the infinite series converges to a finite limit. The infinite
expansion of a function obtained in this way is called the MACLAURIN SERIES for the function.
Ex. Find the Maclaurin series for  if n is negative or fractional.1  xn

Assume 1  xn  a0  a1x  a2x2  ...  anxn  ...
Writing fx  1  xn we have f0  1

fx  n1  xn1 f0  n
fx  n  1n1  xn2 f0  nn  1

and, in general frx  nn  1n  2...n  r  11  xnr fr0  nn  1n  2...m  r  1
and so the Maclaurin expansion of 1  xn is given by

providing this series is1 xn  1nx nn1
2 x2  nn1n2

3! x3  ...  nn1...nr1
r! xr  ...

convergent.
Investigation of convergence is outside our syllabus but it is interesting to consider one standard

test that will suffice for most of the series we shall meet.
First there is the fairly obvious requirement that the terms must tend to zero eventually,

i.e. .rlim ur  0, where ur denotes the r -the term
This however is not in itself a sufficient condition for convergence as can be seen by considering the
series 1  1

2 
1
3 

1
4  ...  1

r which does not converge.
If however , we also have rlim ur1

ur  1 then convergence is guaranteed.

Applying this to our series for 1  xn we have ur1
ur  nr1x

r  x as r  
The condition for convergence is thus satisfied if  and clearly we also have x  1 ur  0
Note that if n is a positive integer then the series terminates at the  term and is identical to then  1 th

series we have met earlier. In this case of course, there is no restriction on the value of x. 
Ex. Find the first four terms in the expansions of (a) 1  x1 (b) 1  x2 (c) 1  x1/2 (d) (1  x

2 )1/2

(e) state also the range values of x for which your series is valid.3  2x1

(a)  for 1  x1  1  1x  12
2! x2  123

3! x3  ..  1  x  x2  x3  ... x  1
(b) 1  x2  1  2x  23

2! x2  234
3! x3  ...  1  2x  3x2  4x3  ... for x  1

(c) 1  x1/2  1  ( 1
2 )x 

1
2  1

2
2! x2 

1
2  1

2  3
2

3! x3  ...  1  1
2 x  1

8 x2  1
16 x3  ... for x  1

(d) (1  x
2 )1/2  1  ( 1

2 )( x
2 ) 

1
2  1

2
2! ( x

2 )2 
1
2  1

2  3
2

3! ( x
2 )3  ...  1  1

4 x  1
32 x2  1

128 x3  .
for x  2

(e) 3  2x1  31(1  2x
3 )1  1

3 1  (1)( 2x
3 )  (1)(2)

2! ( 2x
3 )2 

(1)(2)(3)
3! ( 2x

3 )3  ...
 1

3 
2
9 x  4

27 x2  8
81 x3  ... for x  3

2

Note especially the method of the last example.
In general, a  bxn  an(1  bx

a )n if a  1 and is valid for x  a
b

The binomial series is also very useful for estimation.
18
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Ex. Estimate the value of 3 997 giving your answer correct to 6 decimal places
3 997  (1000  3)1/3  10(1  0.003)1/3

 10 1  1
3 (0.003) 

1
3  2

3
2! (0.003)2  ...

 101  0.001  0.000001  ...
It is clear that the next term will not affect the 6th decimal place so 3 997  10  0.9989990  9.989990
The following expansions are especially important and should be memorised
1  x1  1  x  x2  x3  ... 1  x1  1  x  x2  x3  ...
1  x2  1  2x  3x2  4x3  ...
What can we do with  if x does not lie between  ?1  xn 1
Consider  and since x is large,  must be1  x3 when x is large. We may write 1  x3  x3(1  1

x )3 1
x

small and so we have   for 1
x3 1  3

x  6
x2 

10
x3  ...  1

x3 
3
x4 

6
x5  10

x6  ... x  1
i.e. we have an expansion in descending powers of x
Ex. Express x

1x2x as a series of (i) ascending (ii) descending powers of x
(i) We use partial fractions x

1x2x 
1

1x 
2

2x  1  x1  22  x1

now 1  x1  1  x  x2  x3  ... and 2  x1  1
2 (1  x

2 )1  1
2 1  x

2 
x2

4  x3

8  ...

hence, 
x

1x2x  (1xx2 x3.) 1 x
2 

x2

4 
x3

8 .  x
2 

3x2

4  7x3

8 ...
(ii) For large x, 1  x1   1

x (1  1
x )1   1

x 1  1
x  1

x2  1
x3  ...   1

x  1
x2  1

x3  1
x4  ...

 and 2  x1   1
x (1  2

x )1   1
x 1  2

x  4
x2 

8
x3   1

x  2
x2  4

x3 
8
x4  ...

so x
1x2x   1

x  1
x2  1

x3  1
x4  ...  2  1

x  2
x2  4

x3 
8
x4  ...  1

x  3
x2 

7
x3 

15
x4  ...

Other important standard results. These should be committed to memory.
ex  1  x  x2

2! 
x3

3!  ...  xr

r!  ... valid for all values of x.
 sinx  x  x3

3! 
x5

5! 
x7

7!  ...  (1)r x2r1

2r1!  ... valid for all values of x

cos x  1  x2

2! 
x4

4! 
x6

6!  ...  (1)r x2r

(2r)!  ... valid for all values of x

ln(1  x)  x  x2

2  x3

3  ...  (1)r1 xr
r  valid only for 1  x  1

Note particularly the last one as it is the only one without factorial denominators and the only one other
than the binomial series that has a restricted range of values of x.
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Complex Numbers again
De Moivre's Theorem

We have previously established that (cos  j sin)(cos  j sin)  cos( )  j sin( )
hence, if    then (cos  j sin)2  cos 2  j sin2
Similarly (cos  j sin)3  (cos  j sin)2(cos  j sin)  cos3  j sin 3
which suggests the general result (cos  j sin)n  cos n  j sinn
This result is known as DE MOIVRE'S THEOREM after Abraham de Moivre (1667-1754)
Formal proof is left as an exercise.
Ex. If  z  cos  j sin, find the value of z5  z5

We have z5  (cos  j sin)5  cos5  j sin 5
and z5  z15  (cos  j sin)5  cos5  j sin5  cos 5  j sin 5
Hence, z5  z5  2 cos 5
Ex. Evaluate (cos 

12  j sin 
12 )4

By de Moivre's theorem (cos 
12  j sin 

12 )4  cos 
3  j sin 

3  1
2  j 3

2

Ex Express cos 4 in terms of cos 
cos 4  Re(cos 4  j sin 4)  Re(cos  j sin)4

 Re(cos4  4j cos3 sin  6j2 cos2 sin2  4j3 cos sin3  j4 sin4)
 cos4  6 cos2 sin2  sin4  cos4  6 cos21  cos2  1  cos22

 cos4  6 cos2  6 cos4  1  2 cos2  cos4

 8 cos4  8 cos2  1

Can we form a complex power of a real number? In particular, what meaning can we attach to  if z isez

complex?
First let us consider a purely imaginary power  We may assign a meaning to this by simply requiringe j

that it has a series expansion, thus:
e j  1  j  1

2! (j)2  1
3! (j)3  ...  1  j  1

2 
2  1

3! j3  1
4! 

4  ...
 1  2

2! 
4

4!  ...  j   3

3! 
5

5!  ...  cos jsin
Hence, for the general complex power we have so  is the modulusez exjy  ex  e jy  excos y  j siny ex

and y is the argument of the complex number ez

The n-th roots of unity
(cos p

q   j sin p
q )q  cos p jsin p  (cos   j sin)p

so cos p
q  jsin p

q  is a q -th root of (cos  j sin)p i.e. a value of (cos   j sin)
p
q

thus, for rational n, cos n jsin n is one value of (cos  j sin)n

The reason why we only say "one value of" will soon be apparent.
zn  1  (cos   j sin)n  1 where z  cos jsin  cos n jsinn  1  n  2k for k  0, 1, 2,...
Thus  for integral values of  are the distinct n-th roots of unity.z  cos( 2k

n ) jsin( 2k
n ) k from 0 to n  1

Taking .k  n  1 merely gives a repetition of an earlier root
Ex. Solve z3  1  0
By the result just obtained the solutions are the cube roots of unity
i.e.  z  cos 0 jsin0, cos 2

3 jsin 2
3 , cos 4

3 jsin 4
3 or 1, 1

2 (1  j 3 )
Ex Solve z4  z3  z2  z  1  0
Since  it follows that the required solutions are the complex fifth rootsz  1z4  z3  z2  z  1  z5  1
of unity, i.e. z  cos 2

5 jsin 2
5 , cos 4

5 jsin 4
5 , cos 6

5 jsin 6
5 , cos 8

5 jsin 8
5

Again note that if we write   cos 2
5 jsin 2

5 , then the other roots are 2, 3 and 4

We may also note that since rnr  n  1, the complex roots occur in conjugate pairs.
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The equation zn = c 
Let c be any complex number. If u is any one root of  then we may write zn  c ( z

u )n  1
Hence, all roots are given by u(cos 2k

n  j sin 2k
n ) for k  0, 1, 2, ..., n  1

Now write  If -th root of r then c in the form r(cos  j sin) where r  c r 1
n denotes the real n

r 1
n cos n  j sin 

n is an n-th root of c
Taking u to be this root, the n-th roots of c are given by r 1

n [cos( 2k
n )  j sin( 2k

n )] for k  0 to n  1
Ex. Solve the equation z5  32j
r  32 hence r 1

5  2j cos 
2 jsin 

2 hence z  2 cos

2 2k

5  j sin

2 2k

5 for k  0 to 4

i.e.  andz  2(cos 
10  j sin 

10 ), 2(cos 
2  j sin 

2 ), 2(cos 9
10  j sin 9

10 ), 2(cos 13
10  j sin 13

10 )
2(cos 17

10  j sin 17
10 )

Application of de Moivre's theorem to series
Certain types of trigonometric series may be summed by making use of de Moivre's theorem.

Ex. Prove that 
r1

n
cos r  cos 1

2 n1 sin 1
2 n

sin 1
2 

for   2k, and find an expression for 
r1

n
sin r

Putting z  cos jsin then zr  cos r jsin r

so writing C jS  
r1

n
zr we have C  

r1

n
cos r and S  

r1

n
sin r

Now  by the sum of a geometric seriesCjS z(1zn)
1z

and 1  zn  1  cos n jsin n  2 sin2( n
2 )  2jsin( n

2 ) cos( n
2 )  2jsin( n

2 )[cos( n
2 )  j sin( n

2 )]
so putting n  1 we have 1  z  2 sin( 2 ) cos 

2  j sin 
2

Hence C jS 
(cosj sin) 2j sin n

2 cos n
2 j sin n

2

2j sin 
2 cos 

2 j sin 
2

so equating real and imaginary parts

C 
r1

n
cos r  cos 1

2 n1 sin 1
2 n

sin 1
2 

and S  
r1

n
sin r  sin 1

2 n1 sin 1
2 n

sin 1
2 
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Complex Numbers in Geometry
Simple Loci
By simple analogy with vector geometry we can see that is the distance between the pointsz1  z2
representing  Thus, if  represent the complex constants  andz1 and z2 in the Argand diagram. A, B and P a
b and the complex variable z then
(i) z  a  k where k is real, defines a circle centre A, radius AP  k
(ii) z  a  z  b defines the perpendicular bisector of the line AB
(iii) z  a  k z  b with k  1 is a circle with centre dividing AB externally in the ratio k2 : 1
(iv) , proceeding in theargz  a   with  real defines the half-line from A, excluding the point A itself
direction  measured from the x-axis

(v)  defines a circular arc from  <  measured from  i.e. arg za
zb   A to B such that APB   BP to AP 

is the angle of AP to the x-axis minus the angle of BP to the x-axis.
We prove the least obvious one which is (iii) 
Let z  x jy, a  a1 ja2 and b  b1 jb2 then x  a1  jy  a2  k x  b1  j(y  b2 )

 (x  a1 )2  (y  a2 )2  k2 (x  b1 )2(y  b2 )2

 x2  y2  2a1x  2a2y  a1
2  a2

2  k2(x2  y2  2b1x  2b2y  b1
2  b2

2 )
 (k2  1)(x2  y2 )  2(a1  k2b1 )x  2(a2  k2b2 )y  k2(b1

2  b2
2 )  (a1

2  a2
2 )  0

dividing by (since  gives an equation of the form  which wek 2  1 k  1 x2 y2 2gx2fy c  0

know to be the equation of a circle with centre at the point  which is the
k2b1a1

k21 j k2b2b1
k21  k2ba

k21
point dividing AB externally in the ratio k2 : 1
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Matrices Again
Inverse of a 3 x 3 matrix

Consider M  .
a1 b1 c1

a2 b2 c2

a3 b3 c3

and let   det M  a.(b  c)  0

Let L  be a matrix such that LM = I then Mr = i  LMr  Li  r  Li (the first column of L)
Similarly Lj and Lk are the second and third columns of L respectively.

M
x
y
z

 i x  i.(b  c)
a.(b  c) 

A1
 , y  B1

 , z  C1
 so the first column of L is 1



A1

B1

C1

Replacing i by j and then k in the above then leads to L  1


A 1 A2 A3

B 1 B2 B3

C1 C2 C3

The matrix 
A1 A2 A3

B1 B2 B3

C1 C2 C3

is the ADJUGATE or ADJOINT of M and is formed by replacing each

element of M by its cofactor and then transposing (i.e. Changing rows into columns and v.v.)
It is denoted by adjM, hence, the inverse of M,  M1  1

 adjM

Ex Find the inverse of the matrix M 
4 5 3
3 3 4
5 4 6

We first calculate the cofactors thus: 

A1 
3 4
4 6  18  16  2, A2  

5 3
4 6  30  12  18, A3 

5 3
3 4  20  9  11

Similarly B1  (18  20)  2, B2  24  15  39, B3  (16  9)  25
and C1  12  15  3, C2  (16  25)  41, C3  12  15  27
hence,   4  (2)  3  (18)  5  11  7

adjM 
2 18 11
2 39 25
3 41 27

so M1  1
7

2 18 11
2 39 25
3 41 27

Eigenvalues and eigenvectors
Definition: If s is a non-zero vector such that Ms  s, where M is a matrix and  is a scalar, then s is
called an EIGENVECTOR of M and the scalar  is the corresponding EIGENVALUE
To find eigenvectors we need to solve the equation Ms  s
Now Ms  s  Ms s  0  Ms Is  0  (M  I) s  0
For non-zero solutions we must have det(M  I)  0. This is known as the CHARACTERISTIC

. Det  expands to give a polynomial in EQUATION of M (M  I) , the CHARACTERISTIC
POLYNOMIAL. (Note! Eigenvalues and eigenvectors are also known as characteristic values and
vectors)

Ex Find the eigenvalues and corresponding eigenvectors of the matrix M
1
2

3
2

3
2  1

2

We form the characteristic equation det  i.e. (M  I)  0 (1
2 )(

1
2 )

3
4 0

 are the eigenvalues.  1
4  

2  3
4  0  2  1 so   1
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To find the corresponding eigenvectors we proceed as follows, solving (M  I) s  0

If s  x
y is the eigenvector corresponding to   1 then we require

 1
2

3
2

3
2  3

2

x
y  0

i.e. - 1
2 x  3

2 y  0 and
3
2 x  3

2 y  0  x  3 y and 3 x  3y which is the same as x  3 y

so the eigenvector is a vector along the line x  3 y for example the vector 3
1

and  is a POINTWISE INVARIANT LINE.x  3 y

  1 
3
2

3
2

3
2

1
2

x
y  0  3

2 x  3
2 y  0 and 3

2 x  1
2 y  0

i.e. 3x  3 y  0 and 3 x  y  0 so the other invariant line is y   3 x with eigenvector
1

 3
3 by 3 matrices are dealt with in a similar manner.

Ex Find the eigenvalues and corresponding eigenvectors of the matrix M 
3 0 2
1 2 1
0 0 1

The characteristic equation is 
3   0 2

1 2   1
0 0 1  

 0

i.e. (3  )(2  )(1  )  0 so   1, 2 or 3

     1 
4 0 2
1 3 1
0 0 0

x
y
z

 0 
4x  2z  0

x  3y  z  0 so z  2x and x  3y, so eigenvector is r 
3
1
6

     2 
1 0 2
1 0 1
0 0 3

x
y
z

 0 
x  2z  0
x  z  0
3z  0

so x  z  0, y  any so eigenvector is r 
0
1
0

     3 
0 0 2
1 1 1
0 0 4

x
y
z

 0 
2z  0

x  y  z  0
4z  0

soz  0, x  y so eigenvector is r 
1
1
0

An important application of eigenvalues and eigenvectors is to express a square matrix M in the form 
where D is a diagonal matrix making it very easy to obtain powers of a square matrix.PDP1

Ex Consider the matrix M  dealt with above.  and hence find 
3 0 2
1 2 1
0 0 1

Express M in the form PDP1

M3 and M4

Let  i.e. a diagonal matrix with the eigenvalues as diagonal elements.D 
1 0 0
0 2 0
0 0 3

Take P
3 0 1
1 1 1
6 0 0

i.e. columns are the eigenvectors. then detP  6 so P1  1
6

0 0 1
6 6 2
6 0 3
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PDP1  1
6

3 0 1
1 1 1
6 0 0

1 0 0
0 2 0
0 0 3

0 0 1
6 6 2
6 0 3

 1
6

3 0 1
1 1 1
6 0 0

0 0 1
12 12 4
18 0 9


3 0 2
1 2 1
0 0 1

 M

i.e. PDP1  M

Thus M3  (PDP1 )(PDP1 )(PDP1 )  PD3P1  1
6

3 0 1
1 1 1
6 0 0

1 0 0
0 8 0
0 0 27

0 0 1
6 6 2
6 0 3

i.e. M3  1
6

3 0 1
1 1 1
6 0 0

0 0 1
48 48 16
162 0 81


27 0 14
19 8 11
0 0 1

and M4  1
6

3 0 1
1 1 1
6 0 0

1 0 0
0 16 0
0 0 81

0 0 1
6 6 2
6 0 3

 1
6

3 0 1
1 1 1
6 0 0

0 0 1
96 96 32
486 0 243


81 0 .40
65 16 35
0 0 1

The Cayley-Hamilton Theorem
Continuing with the above matrix, the characteristic equation was (  1)(  2)(  3)  0
i.e. 3 42  6  0

M2 
9 0 4
5 4 3
0 0 1

and so M3  4 M2  M 6 I 
27 0 14
19 8 11
0 0 1


36 0 16
20 16 12
0 0 4


3 0 2
1 2 1
0 0 1


6 0 0
0 6 0
0 0 6

i.e. M3  4M2  M 6I 
0 0 0
0 0 0
0 0 0

 0

This illustrates the Cayley-Hamilton theorem which states that a square matrix always satisfies its own
characteristic equation.
The main use of this theorem is to find higher powers of a square matrix.
Example With M as above, find M6

Solution
We have  M3  4M2 M 6 I  0 M3  4M2  M 6I M4  4M3  M2 6M
i.e. M4  15 M2 10 M 24 I
M5  15 M3 10 M2 24 M  50 M2 39 M 90 I
so M6  50 M3 39 M2 90 M  161 M2 140 M 300 I

i.e. M6 
1449 0 644
805 644 483

0 0 161


420 0 280
140 280 140

0 0 140


300 0 0
0 300 0
0 0 300


729 0 364
665 64 343

0 0 1
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Hyperbolic Functions
We define the hyperbolic cosine, sine and tangent by

;    and coshx  chx  1
2 (ex  ex ) sinhx  shx  1

2 (ex  ex ) tanhx  thx  shx
chx 

exex

exex

also sechx  1
cosh x ; cosechx  1

sinh x and cothx  1
tanhx

The following give some justification for the 'invention' of these functions.
(i) a number of integrals which otherwise cannot be obtained, are expressible in terms of them
(ii) A uniform chain hanging freely between two fixed points takes the form of a CATENARY with
equation y  k cosh( x

k ) where k is constant, referred to suitable axes.
(iii) If x  a cosh and y  b sinh then
x2

a2 
y2

b2  1  cosh2  sinh2  1  1
4 (e  e )2  1

4 (e  e )2  1

so   are parametric equations for the hyperbola x  a cosh and y  b sinh
x2

a2 
y2

b2 1
This last result indicates the close analogy with the circular functions  In factsin, cos and tan etc.
there is a hyperbolic identity corresponding to each trigonometric one.
We have already seen that cosh2  sinh2  1.
Consider now sinh2  cosh2  1

4 (e  e )2  1
4 (e  e )2  1

2 (e2  e2 )  cosh2
Thus  sin2  cos2  1 and cos2  sin2  cos 2
but sinh2  cosh2  cosh2 and cosh2  sinh2  1
OSBORN'S RULE enables us to write down any hyperbolic identity from the corresponding
trigonometric one: "Change cos to cosh, sin to sinh, and change the sign of any term involving the
product of two sines"
Thus  sinA  B  sinA cos B  cos A sinB  sinhA  B  sinh A coshB  coshA sinhB
but cosA  B  cos A cos B  sinA sinB  coshA  B  coshA cosh B  sinh A sinhB
and tan2A  2 tan A

1tan2A translates to tanh 2A  2 tanh A
1tanh2A

Note that tan2A  sin2A
cos2A translates to sinh2A

cosh2A   tanh2A

Ex. Write down and prove the hyperbolic identity corresponding to 1  tan2x  sec2x
By Osborn's rule the identity is 1  tanh2x  sech2x

Proof Left hand side  1  ( exex

exex )2  (exex)2(exex)2

(exex )2  4
(exex )2  1

cosh2x  sech2x

Equations involving hyperbolic functions may be solved either by using similar methods to those for
trigonometric equations or by using the definitions of the hyperbolic functions as in the following
example.
Ex Solve the equation 2 sinh x  cosh x  1
2 sinh x  cosh x  1  (ex x )  1

2 (ex  ex )  1 ex  3ex  2 e2x  2ex  3  0
hence, ex  3ex  1  0 but ex cannot be negative so ex  3 is the only solution, i.e. x  ln 3
Differentiation and Integration

 and by the quotient ruled
dx sinhx  d

dx
1
2 (ex  ex )  1

2 (ex  ex )  coshx, similarly d
dx coshx  sinhx

 with corresponding integral results.d
dx tanhx  sech2x
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The Inverse Functions
Consider first the graphs of sinhx, coshx and tanhx which are readily obtained from the graphs of ex

 and ex

   y  coshx

y  tanhx

     y  sinhx
We can see from these graphs that sinhx is one to one with range and domain both equal to ‘

We therefore define the inverse hyperbolic sine,  such thatsinh1x, for all values of x to be that value of y
x  sinhy. Thus y  sinh1x  x  sinh y  1

2 (ey  ey )  2x  ey ey

e2y  2xey  1  0 ey  x  x2  1
Since we must have  ey  0 it follows that only the positive root is acceptable and so

sinh1x  y  ln x  x2  1 for x  ‘

coshx is not one to one unles we restrict the domain, the usual restriction being to allow only x  0
We can then define cosh1x to be the positive value of y such that x  coshy.
Thus  y  cosh1x  x  coshy  1

2 (ey  ey ) e2y  2xey  1  0 ey  x  x2  1

Now x  x2  1 x  x2  1  x2  (x2  1)  1  x  x2  1  x  x2  1
1

The domain of cosh1x is x  ‘ : x  1 and for x  1 x  x2  1  1  x  x2  1  1
and  and so we cannot have ey  1  y  0. But from our definition of cosh1x we must have y  0
ey  x  x2  1 . Hence cosh1x  y  lnx  x2  1
tanh x is clearly one to one for all real x and so we define tanh1x to be that value of y such that

 The logarithmic form for x  tanhy for 1  x  1. tanh1x is left as an exercise.
Derivatives and Integrals
y  sinh1x  x  sinhy  dx

dy  coshy  dy
dx 

1
cosh y 

1
x21

Only the positive root need be considered since sinh1x has a positive gradient for all values of x

Similarly  (why only the positive root this time?) and d
dx cosh1x  1

x21

d
dx tanh1x 1

1x2

Verify these results for yourself. You could be asked to derive them in an examination.
Hence,  dx

x21
 sinh1x  c  lnA x  x2  1  dx

x21
 cosh1x  c  lnA x  x2  1

and  this one could also be done by partial fractions dx
x21  tanh1x  c  1

2 lnA( 1x
1x )

What restrictions must be imposed on the values of x in these three integrals?
We can now complete our review of integrals of the form  dx

ax2bxc and  dx
ax2bxc

By completing the square of the quadratic in the denominator we obtain one of the following:
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 dx
X2A2 

1
A arctan( X

A );  dx
X2A2 

1
2A lnk XA

XA ;  dx
A2X2 

1
2A ln AX

AX
where X has the form x  b unless ax2  bx  c  0 for all x in which case the integral does not exist.
Note that a logarithmic form is usually preferred to an inverse hyperbolic tangent.

;    dx
A2X2  sin1( X

A )  dx
A2X2  sinh1( X

A );  dx
X2A2  cosh1( X

A )

28

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/


Curve Sketching Again
Most of the techniques were dealt with earlier. The remaining ones are (i) curves with equations of the
form y2  f(x) and (ii) equations of the form y  f(x)
(i) To sketch  y2  f(x) we start by sketching y  f(x) and then plot the two square roots of each ordinate.
Ex. Sketch y2  xx1

x1
We first sketch y  xx1

x1 shown by a dotted line in the diagram below
We note that x  1 is an asymptote.
There is no horizontal asymptote but writing the 
equation as  we see that y x2 2

x1 y  x  2
is an asymptote. Considering how the curve
approaches these asymptotes it is quite easy to
sketch the curve.
Clearly, the curve can only exist for 

1  x  0 and x  1
Between x  1 and x  0 we must have a closed
loop. Note that, in general, if 0  y  1 then y  y
while if and the square root y  1 then y  y
curve must intersect the original curve at any point 
where   y  0 or 1

Ex. Sketch y2  x21  x
This example is included to illustrate one final situation.. It is easy to sketch the graph of 

 y  x21  x as it is simply a cubic, touching the x  axis at the origin and passing through 1, 0
The square root curve obviously only exists for x  1 and we again must have a loop for 0  x  1
The curves y  x21  x and y2  x21  x also intersect where y  1, but how does the square root
curve pass through the origin and how does it go off to infinity.
At the origin there are really just three possibilities

Since this is an important feature of the graph we consider how the curve behaves for small values of x
We have 

 y2  x2  x3  y2  x2 for small x since the x3 term may be neglected as being very small compared
 so the middle diagram must be the correct one. with x2  y   x for very small values of x

To deduce how the curve goes off to infinity consider y  xn

(i) If n  1 we have a straight line (ii) if n  1 the line will get steeper as x increases
(iii) if 0  n  1 the curve will get flatter as x increases
In the above example, since the dominant term for large x is x3 it follows that the curve will get steeper
as x   but not too rapidly. Can you sketch the final curve?
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Graph of y  f(x)

This is simply a matter of sketching   and reflecting any part of the graph that is below the x-axisy  f(x)
in that axis.
Inequalities
We encountered the solution of inequalities earlier . An alternative method is to use a sketch graph as
follows.
Ex. Solve the inequality 2x1

x1 
9

x1
Solution: This is equivalent to  Note that since we do not know2x  1x  12x  1  9x  12x  1
whether the denominators are positive or negative we must multiply by the squares of the denominators
to ensure that the inequality sign remains unchanged.
Thus we have 2x  1x  12x  1  9x  12x  1  0  x  1x  12x  1x  1  9x  1
i.e.  so we plot x  1x  12x2  8x  8  0  2x  1x  1x  22  0 y  2x  1x  1x  22

This is easily sketched since it crosses the x- axis where x  1 and 1 and touches the axis at x  2
Clearly also,  y is positive for large positive or negative values of x since the dominant term is x4

Since we require y  0 we can easily see that the solution is 1  x  1 or x  2
You should also be aware of the standard cartesian and parametric equations of the conics which are as
follows:
Parabola: y2  4ax, x  at2, y  2at for a parabola symmetrical about x axis passing through origin.

Ellipse: x2

a2 
y2

b2  1, x  a cos, y  b sin for symmetrically placed ellipse .

Hyperbola: x2

a2 
y2

b2  1, x  a sec, y  b tan or x  a cosh, y  b sinh
Rectangular Hyperbola: xy  c2, x  ct, y  c

t
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Further Applications of Advanced Mathematics FP3
Further Vector Geometry - The Vector Product
The vector product of two vectors a and b at an angle  to each other, is defined to be the vector ofab 
magnitude   in a direction perpendicular to both a and b such that a, b and a  b form aab sin 
right-handed set of vectors. i.e. An ordinary (right- handed) screw rotated from the direction of a to the
direction of b would move in the direction of a  b.

Thus  where  is a unit vector in the direction of a  bab ab sinn n 

An immediate consequence of the definition is that a  b = – b  a so vector multiplication is 
anti-commutative.
a  b = 0 In particular   a  0 or b  0 or a is parallel to b. a  a  0 hence, i  i  j  j = k  k = 0
whilst i  j = k, j  k = i, k  i = j, j  i =  k, k  j =  i and k  i   j
The distributive law  can be shown to hold and so, in component form, witha  (b  c)  a  b + a  c
usual notation,
a  b   a1i  a2j + a3k)  (b1i + b2j+ b3k)  a2b3  b2a3i a3b1  a1b3j a1b2  a2b1k

The following diagram is a convenient aid to memory   The three triple products 
a1 a2 a3 a1 a2

b1 b2 b3 b1 b2

i j k i j

sloping downwards from left to right are positive and the three sloping upwards from left to right are
negative.
Ex. Given , find the components of the vector  in the directions of thep  i + j and q = 2i  j + 2k p  q
axes. Find also the magnitude of the resolved part of p  q in the direction of i + j  k
  and the components are thus 2i, – 2j and p  q = 2  0i 0  2j 1  2k  2i  2j  3k

– 3k. The magnitude of the resolved part in the direction of r is(pq).r 2i2j3k. 1
3 ij k)

    1
3 3 3

Ex. Find a unit vector perpendicular to both a = 2i + 2j  k and b = 4i + j  k
a  b = 2  1i 4  2j 2  8k   i 2j 6k

Thus  are perpendicular to both a and b and so a unit vector is  i 2j 6k and i 2j 6k
1
41 i 2j 6k)

Applications of the vector product.
1. Line of intersection of two planes. The vector product of the normals to the planes gives us the
direction vector for the line of intersection. Finding the coordinates of any one common point of the
planes then enables us to write down the equation of the line of intersection.
Distance of a point from a line
Problem
To find the distance of the point Px, y, z from the
line r  a b

Let A be any point on the line.
Required distance is PN
The vector product gives APAN AP AN sin
so AP  b̂  APsin i.e. PN  AP  b

b
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Special case. (2 dimensions)
Consider a point and a line in the plane z  0
If equation of line is ax  by  c  0 and P is the point x1, y1, 0 then we may take A to be 0, c

b , 0

b 
b
a
0

and so AP  b̂ 
x1

y1  c
b

0


b
a
0


0
0

ax1  by1  c

hence,PN  AP  b
b 

ax1by1c
a2b2

Triple Products.
There are two types of triple product.
Shortest distance between two skew lines (i.e. lines which do not intersect)
Let A and B be any points on each of the two lines
Shortest distance between the lines will be the length of the
common perpendicular PQ hence, since APQ and BQP
are right angles, PQ is the projection of AB on the common
perpendicular to the two lines. 
The direction of PQ is given by  where r and s arer  s
the direction vectors of the two lines, hence,
PQ  AB.(r  s)

r  s

Distance of a point from a plane
Problem
To find the distance of the point P from the plane 
r  a b c
Solution
NP has direction a  b the normal to the plane.

 PN  AP cos  AP.PN
PN 

(p  a).(a  b)
a  b

Note.  is positive if P is on the same side 
(p  a).(a  b)

a  b
of the plane as the origin and negative if on opposite side.
If the equation of the plane is ax  by  cz  d  0 and P is the point x1, y1, z1 a normal to the plane is

a
b
c

so taking A to be the point
0
0
 d

c

we have AP.PN 
x1

y1

z1  d
c

.
a
b
c

 ax1  by1  cz1  d

 note similarity to result for distance of point from line in 2 dimensions.hence, PN 
ax1by1cz1d

a2b2c2

Scalar Triple Product
The second and third results above both involve an expression of the form a.b  c
We saw there that it measures the volume of a parallelepiped with edges defined by a,b and c

and is calculated as for a 3 by 3 determinant. i.e. a.(b  c) 
a1 b1 c1

a2 b2 c2

a3 b3 c3

Note that a cyclic change of the letters does not affect the value but a non-cyclic change multiplies the
product by –1.
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Geometrical applications
An immediate application is to test whether two lines intersect. If they do then the shortest distance
between them is zero and hence the scalar triple product in the previous work is zero. Conversely, if the
scalar triple product is not zero then the lines do not intersect.
To test whether points A,B,C and D are coplanar.
If they are, then the parallelepiped defined by edges AB,AC and AD will have zero volume and so the
scalar triple product (b  a).[(c  a)  (d  a)]  0
Testing for right or left-handedness

, a.(b  c)  0  a, b and c form a right handed set a.(b  c)  0  a, b and c form a left handed set
Remember that  but for example   a.(b  c) b.(c  a) c.(a  b) a.(c  b)  a.(b  c)
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Multivariable calculus
There are many situations where we are dealing with a function of more than one variable.
e.g. the volume of a cylinder is given by V  r2h whilst a surface in 3-dimensional space will have an
equation of the form z  f(x, y)
If z  2 cos x  y2 defines such a surface, letting x take a fixed value  say, we have z  2 cos  y2

which represents a curve in the y, z plane, i.e. a section of the surface perpendicular to the x  axis
whilst giving y a fixed value will produce a section of the surface perpendicular to the y  axis.
If z has a fixed value we have a section parallel to the x  y plane which is usually called a CONTOUR.
In this example the sections with x constant will be inverted parabolas, those with y constant will be
cosine curves whilst the contours z  constant will be of differenmt forms accoprding to the value of z.
The diagram shows a few contours for this surface.
z  2 gives a series of points at x  k

0  z  2 gives a series of circles centered at x  k

k  2 gives a pair of cosine curves intersecting on the x -axis at x  2k  1

k  2 and the curves do not intersect the axis.

Partial Differentiation
 Suppose z  f(x, y) and let x increase by a small amount x while y remains constant, then the increase
in z is f(x  x, y)  f(x, y) and the average rate of change of z with respect to x is f(xx,y)f(x,y)

x

The limit of f(xx,y)f(x,y)
x as x  0, if it exists, is called the PARTIAL DERIVATIVE of z with

 respect to x and is denoted by z
x (Note! Be careful not to confuse the symbols  and d)

Similarly z
y is the partial derivative of z with respect to y, x remaining constant.

Ex Find z
x and z

y when z  y2 lnx
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Treating y as a constant we have z
x  y2  1

x 
y2

x

treating x as a constant z
y  2y lnx

Geometrically speaking, z
x tells us the gradient of a section of the surface perpendicular to the y  axis

.whilst z
y gives the gradient of a section perpendicular to the x- axis

Tangent Planes
Consider a surface z  f(x, y) and suppose that at the point x  a, y  b on this surface the values of z

x

and z
y are p and q respectively then the vectors

1
0
p

and
0
1
q

must lie in the plane tangential to the

surface at this point, hence, a normal to the plane is given by
1
0
p


0
1
q


p
q
1

and so the

equation of the tangent plane is px  qy  z  ap  bq  f(a, b)
Ex Find the equation of the tangent plane to the surface z  x3

y2 at the point given by x  4, y  8

x  4, y  8  z  1. z
x 

3x2

y2  48
64  3

4 at 4,8, 1, z
y  

2x3

y3   128
512  1

4

So two vectors in the tangent plane are
1
0
3
4

and
0
1
1
4

A normal vector is
1
0
3
4


0
1
1
4


 3

4
 1

4
1

so tangent plane is  3
4 x  1

4 y  z  3  2  1  0

i.e. tangent plane is 3x  y  4z  0
Directional derivatives
To find the gradient on the surface z  f(x, y) at the point A(a, b, c) in the direction defined by the

horizontal unit vector û cos
sin we put dx  cos  and dy  sin in the equation of the tangent plane

at A to give dz  f
x cos   f

y sin, the partial derivatives being evaluated at A. Since this value of dz
is the vertical change needed to get back to the tangent plane after a unit horizontal step, it is also a
measure of the required gradient. This is known as the DIRECTIONAL DERIVATIVE in the
direction of û.
The vector grad f

The directional derivative can also be written as the scalar product
cos
sin

f/x
f/y

 The second of these vectors is called grad f, or  f .  is pronounced ”nabla”
grad f is a vector normal to the contour through A and is also the maximum gradient on the surface.
Summarising, if A(a, b, c) is a point on the surface z  f(x, y) and the contour with equation f(x, y)  c
is drawn in the x  y plane, then the vector grad f, drawn starting at point Athe foot of the perpendicular

from A to the x  y plane) is normal to the contour, points in the direction of greatest slope, and has
magnitude equal to the greatest gradient at A.
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Implicit functions

To find the derivative of an implicit function f(x, y) we note that because
f/x
f/y is a normal to the

curve, considered as a contour, then
f/x
f/y must be tangential and so gives the derivative.

i.e. dy
dx  

f/x
f/y

Stationary points
A STATIONARY POINT on a surface is a point where the tangent plane is horizontal.
i.e. z  constant  f

x and f
y are both zero.

It is a local maximum if f(a  h, b  k)  f(a, b) for all sufficiently small h, k (not both zero)
It is a local minimum if f(a  h, b  k)  f(a, b) for all sufficiently small h, k (not both zero)
It is a SADDLE point if f(a  h, b  k)  f(a, b) for all sufficiently small h, k (not both zero)
Functions of more than two variables

 which gives an approximation for the changeIf w  g(x, y, z) then we have w  w
x x 

w
y y 

w
z z

in w due to small changes in x, y and z.

The vector grad g is now defined to be
w/x
w/y
w/z

and may be interpreted as the vector whose

magnitude and direction gives the greatest rate of change of w and the direction in which it occurs.
The surface g(x,y,z) = k
The set of points (x, y, z) for which w  k forms a surface with equation g(x, y, z)  k, this is the three-
dimensional equivalent of a contour of a function of two variables. It is sometimes known as a
CONTOUR SURFACE
If A(a, b, c) is a point of the surface w  k, and û is any unit vector tangential to the surface at A, then
since w remains constant in the surface, the directional derivative in the direction of û is zero.

i.e. û.grad g 0  grad g is perpendicular to û and hence to all vectors in the tangent plane so it is a
normal vector for the tangent plane.
The tangent plane thus has equation w

x x  w
y y  w

z z  constant  w
x a  w

y b  w
z c

and equation of normal at A is r agrad g
Ex A surface has equation z  x2y  2xy  y2  3y  8
(i) Find z

x and z
y

(ii) Find the co-ordinates of the three stationary points on the surface.
(iii) Find the equation of the tangent plane to the surface at the point 0, 1, 4
(iv) The normal line at the point 2, 0, 8 meets the surface again at the point P.
Find the co-ordinates of P.
(i) z  x2y  2xy  y2  3y  8  z

x  2xy  2y and z
y  x2  2x  2y  3

(ii) At stationary points z
x 

z
y  0 i.e. xy  y  0  y  0 or x  1

substituting in z
y  0 we have x2  2x  3  0 if y  0 i.e. (x  3)x  1  0  x  3 or 1

x  3, y  0  z  8 and x  1, y  0  z  8
and y  2 if x  1  z  2  4  4  6  8  12 so stationary points are 1, 0, 8, 3, 0, 8 & 1,2, 12
(iii) At 0, 1, 4 we have z

x  2 and z
y  5 so tangent plane is z  4  2x  5y  1

i.e. 2x  5y  z  9
(iv) Let  g(x, y, z)  x2y  2xy  y2  3y  z  8

At 2, 0, 8 g
x  0 g

y  3 and g
z  1 so

0
3
1

is a normal vector

Equation of normal line is thus  r 
2
0
8

 
0
3
1

which meets surface again when

12  12  92  9  8    8  0  92  10  0    0 or  10
9
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Co-ordinates of P are thus(2, 3   10
9 , 8  10

9 ) i.e. (2, 10
3 , 62

9 )
Ex. (i) Given that g(x, y, z)  3x2  y2  2z2  xy  2xz  9, find g

x , g
y and g

z

A surface has equation  3x2  y2  3z2  xy 2xz 9  0
(ii) Find the equation of the normal line to the surface at the point P1,1, 2
(iii) This normal line meets the surface again at the point Q. Find the co-ordinates of Q, and show that the
normal line at P is also the normal line at Q.
(iv) Find the co-ordinates of the two points on the surface where the tangent plane is parallel to the plane 
x  0
(i) gx, y, z  3x2  y2  2z2  xy  2xz  9
        g

x  6x  y  2z, g
y  2y  x and g

z  4z  2x
(ii) at P(1,1, 2), g

x  3, g
y  3 and g

z  6

Hence, equation of normal is       r 
1
1
2

 
1
1
2

 t
1
1
2

(iii) Parametric equations of normal are x  t, y  t, z  2t
and this meets the curve where 3t2  t2  8t2  t2  4t2  9  0  t  1
t  1 corresponds to the given point so the other point Q is (1, 1, 2)

at Q(1, 1, 2), g
x  3, g

y  3 and g
z  6 so equation of normal at Q is r  s

1
1
2

      which is clearly the same line as the normal at P.
(iv) tangent plane is parallel to x  0 where g

y  g
z  0  2y  x and 4z  2x

i.e. at points of the form (2k, k,k)
such points lie on the surface if 12k2  k2  2k2  2k2  4k2  9  0  k  1

      hence, the required points are 2, 1,1 and 2, 1, 1
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Differential Geometry
Envelopes
To find the envelope of a system of curves of the form f(x, y, p)  0 where p is a parameter we find
the partial derivative of f with respect to the parameter and solve f(x, y, p)  0 and f

p  0
simultaneously.
Arc Length
The “positive sense” along a curve is the senase in which a point moves as the independent variable 
(or parameter) increases.

By Pythagoras, in an elemental triangle we have s  (x)2  (y)2 hence, ds
dp  dx

dp
2


dy
dp

2

so arc length  
pa

pb
dx
dp

2


dy
dp

2
dp  

xa

xb

1  dy
dx

2
dx  

ya

yb

1  dy
dy

2
dy

depending on how the equation is defined.

In polar coordinates we have s  



dr
d

2
 r2 d

Solids of revolution
. Consider a curve y  f(x) rotated through four right angles about the x axis, then we have

Volume generated between x  a and x  b is 
a

b

(f(x))2 dx

Curved surface area produced is 
A

B

2y ds  
a

b

2y ds
dx dx  

p1

p2

2y ds
dp dp  

p1

p2

2y dx
dp

2
 dy

dp
2

dp

Intrinsic equations
The INTRINSIC equation of a curve is the equation connecting the arc length s with the angle  (psi)
between the tangent to the curve and a fixed direction, usually a horizontal axis.
Curvature
The CURVATURE at a point P is the rate of change of  witrh respect to s at P and is denoted by 
i.e.   d

ds . Curve is curving to the left of the positive tangent if   0.
  0 at a point of inflection but the converse does not apply.
If the intrinsic equation is known then differentiating with respect to  and inverting will give the
curvature. If we do not have the intrinsic equation it is rather more difficult.

From cartesian equation,  
d2y
dx2

1 dy
dx

2 3/2 or from parametric equations   x y y x

(x2y 2 )3/2

In this last form, the primes denote differentiation with respect to the parameter.
The Circle of curvature
The circle with its centre on the normal through P, which touches the curve at P, has curvature 
and is called the circle of curvature. It’s radius,   1

 is the radius of curvature at P.

i.e. radius of curvature  
1

dy
dx

2 3/2

d2y
dx2

 (x 2y 2 )3/2

xy y x 

Centre of curvature
Let t̂ be the unit vector in the direction of the positive tangent and n̂ the unit vector in the direction of

.the positive normal, i.e. 90o anticlockwise from t̂
If C is the centre of curvature then PC  n̂ and the position vector of C is given by c  r n̂

  In coordinate form, x  a   sin, y  b   cos where C(x, y) is the centre of curvature at P(a, b)
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The evolute of a curve
The EVOLUTE of a curve is the locus of the centre of curvature as P moves along the curve, alternatively
it is the envelope of the normals to the curve at the point P. This is usually the easiest way to find it.
Involutes
If a string is wrapped round the evolute and then unwound, keeping the free part taut and straight, then 
the end of the string describes the original curve, whilst any other point of the string describes a ”parallel”
curve, these parallel curves are called INVOLUTES of the evolute.
Ex (i) For the point P0, 1 on the curve y  e2x, calulate
(a) the radius of curvature.
(b) the co-ordinates of the centre of curvature.
(ii) (a) Find the equation of the straight line passing through the points t, 0 and (0, t3 )
(b) As t varies, these straight lines define an envelope. Find the cartesian equation of the envelope.
(i) (a) y  e2x 

dy
dx  2e2x and d2y

dx2  4e2x so   4e2x

(14e4x )3/2 
4

5 5 at P

so radius of curvature is 5 5
4

(b) t̂  1 5
2/ 5

so n̂ 
2/ 5
1/ 5

hence centre of curvature is at
0
1 

5 5
4

2/ 5
1/ 5


5/2
9/4

(ii) (a) equation of linej oining t, 0 and (0, t3 ) is y  t3

t (x  t)  y  t2x  t3

(b) Let g(x, y, t)  y  t2x  t3 then g
t  2tx  3t2 so solving y  t2x  t3  0 and2tx  3t2  0

simultaneously we have t  2
3 x (since t  0  y  4

9 x3  8
27 x3  0  y   4

27 x3

Which is the equation of the envelope.
Ex A curve has parametric equations x  4t  1

3 t3, y  2t2  8.
(i) Show that the radius of curvature at a general point (4t  1

3 t3, 2t2  8.) on the curve is 1
4 (4  t2 )2

(ii) Find the centre of curvature corresponding to the point on the curve given by t  3.
The arc of the curve given by 0  t  2 3 is dsenoted by C.
(iii) Find the length of the arc C.
(iv) Find the area of the curved surface generated when the arc C is rotated about the x-axis.

(i) x   4  t2; y   4t; x   2t; y   4

so   (x 2y 2 )3/2

x y y x  
(4t2 )216t2 3/2

44t28t2  (4t2 )3

4(4t2 ) 
1
4 (4  t2 )2

(ii) At t  3, x  3; y  10;x   5 and y   12 so dy
dx  

12
5 and   169

4

t̂  5/13
12/13  n̂ 

12/13
5/13 so centre of curvature is at

3
10  169

4
12/13
5/13 

36
25/4

i.e. centre of curvature is at (36, 25
4 )

(iii) Length of arc is 
0

2 3

x 2  y 2 dt  
0

2 3

(4  t2 )dt  4t  1
3 t3

0
2 3

 8 3  8 3  16 3

(iv) Area of curved surface is 2 
0

2 3

y x 2  y 2 dt  2 
0

2 3

(2t2  8)(4  t2 )dt

 2 
0

2 3

(2t4  32)dt  2[ 2
5 t5  32t]0

2 3  2( 2
5  32  9 3  64 3 ) 

512 3 
5

40

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/


Abstract Algebra
A ”binary operatrion” on a given set of elements, is a rule which takes two elements of the set (which
need not be distinct) and forms a definite third element (which may be the same as either of the
original ones). Typical examples are:
Addition of numbers, vectors, matrices etc.
Multiplication of numbers or matrices.
Combination of permutations, functions etc.
If the result of the operation is always an element of the original set then we say the operation is CLOSED
If changing the order of the two elements gives the same result, i.e. a  b  b  a then we say the
operation is COMMUTATIVE
If a  b  c  a  b  c for all a, b, c in the set we say the operation is ASSOCIATIVE
If there is an element e in the set such that a  e  e  a  a for every element a in the set then e is called
an IDENTITY element for the operation.
If for an element a in the set, there exists an element b such that a  b  b  a  e then we say that b is the
INVERSE of a, more usually denoted by a1 unless the operation is one of addition when we use a
for the inverse.
Groups
A non-empty set S together with a binary operation  is said to form a GROUP if the following four
axioms hold true.
(C)  is closed in S. i.e. a, b in S  a  b and b  a are in S (note that a  b and b  a may be different)
(A) . is associative. i.e. a  b  c  a  b  c for all a, b, c in S
(N) There is an identity or neutral element e in S such that a  e  e  a  a for all a in S
(I) Each element a in S has an inverse element a1 in S such that a  a1  a1  a  e
If, in addition, a  b  b  a for every a, b in S then we say it is a COMMUTATIVE or ABELIAN group.
Immediate consequences of the axioms are:
(a) The identity element is unique. If e and f are two identity elements then ef  e and ef  f  e  f
(b) Inverses are unique. If a has two inverses, p and q then p  pe  paq  paq  eq  q
(c) Cancellation laws hold: hahah1(ha) h1(hb) (h1h)a (h1h)bab
(d) ax  b has a unique solution: ax  b  a1ax  a1b  (a1a)x  a1b  x  a1b
But note that ax  b does not imply that x  ba1 unless the group is commutative.
The order of a group
A group may be either finite or infinite. A finite group means that it has a definite finite number of
elements, the ORDER of the group.
Isomorphisms
A mapping between two groups of equal size which preserves the structure of the groups is called an
ISOMORPHISM and the groups are said to be ISOMORPHIC.

  A mapping f is an isomorphism if, for any a, b in the first set we have f(a  b)  f(a)of(b) where  is the
operation in the first set and o is the operation in the second set.
Subgroups
If there is a subset of the elements of a group G  (S,) which has the group properties itself then it is
called a SUBGROUP of G.
A PROPER subgroup is any non-empty subgroup excluding the whole group itself. {e} and G are
TRIVIAL subgroups. All others are called “NON-TRIVIAL”
Cayley’s Theorem
A finite group G of order n is isomorphic to a subgroup of the group of permutations of n elements.
Lagrange’s Theorem
This states that the order of any subgroup of a finite group G, must be a divisor of the order of G.
See proof in text book. (page 155)
Cyclic groups
If all the elements of a finite group G are powers of some element of G then it is called a CYCLIC
group.
Groups of prime order are necessarily cyclic.

Ex G is a finite group which is commutative. S and T are subgroups of G, and S T  e, where e is
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the identity element of G.
We define ST to be the set of all elements of the form st, where s  S and t  T.
(i) Show that ST is a subgroup of G.
(ii) Show that if s1t1  s2t2 where s1, s2  S and t1, t2  T, then s1  s2 and t1  t2.
(iii) Deduce that if S contains k elements and T contains m elements, then ST contains km elements.
Now let G  1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, where the binary operation is multiplication .

You may assume that G is a commutative group.modulo 36.
Three cyclic subgroups of G are S  1, 13, 25; T  1, 17 and U  1, 35
(iv) List the elements of the subgroup ST and show that ST is cyclic.
(v) List the elements of TU and show that TU is not cyclic.
(i) x, y  ST  x  s1t1 and y  s2t2 for some s1, s2  S, t1, t2  T
xy  s1t1s2t2  s1s2t1t2 (since G is a commutativeg roup)
but s1s2  S and t1t2  T so xy  ST and we have closure.
We are given that ST contains the identity element.
Associativity is inherited from G so ST is a subgroup og G.
(ii) s1t1  s2t2  s2

1s1  t2t1
1 and s2

1s1  S and t2t1
1  T so we must have s2

1s1  t2t1
1  e

s2
1s1  e  s1  s2 and similarly t1  t2

(iii) From (ii) all the elements st are distinct so we have 
k  1 elements of the form se and m  1 of the form

 , i.e.et  ee  k  1m  1 of the form st giving a total of k  1m  1  k  1  m  1  1 elements
Km.
(iv) ST contains 1, 13, 17 and 25 so must also contain 13  17 and 25  17 (mod 36) i.e. 5 and 29
so ST  1, 5, 13, 17, 25, 29 and by inspection this is cyclic, generated by the element 5.
(v) TU contains 1, 17 and 35 so only other element is 17  35 (mod 36)  19
hence, TU  1, 17, 19, 35 and since every element is self inverse it cannot be cyclic.
Ex. A non-Abelian group G consists of eight 2  2 matrices, and the binary operation is matrix

 multiplication. The eight distinct elements of G can be written as G  I,A, A2,A3,B,AB,A2B,A3B
 are  where I is the identity matrix, and A,B 2  2 matrices such that A4  I, B2  I and BA  A3B

(i) Show that (A2B)AB  A andAB)(A2B)  A3

(ii) Evaluate the following products, giving each one as an element of G as listed above.
(AB)(A),  (AB)(AB),  (B)(A3
(iii) Find the order of each element of G.
(iv) Show that 
(v) Find the other two subgroups of  G which have order 4.
(vi) For each of the three subgroups of order 4, state whether or not it is a cyclic subgroup.
Solution
(i) A2B)(AB)  A2BA)B  A2A3B)B  A5B2  A4AB2  IAI  A

       (AB)(A2B)  A(BA)AB  A(A3B)AB  A4BAB  IA3B2  A3I  A3

(ii) (AB)(A)  A(BA)  AA3B  IB  B
(AB)(AB)  A(BA)B  A(A3B)B  A4B2  II  I
(B)(A2  (BA)A  A3BA  A3A3B  A6B  A2B

(iii) A and A3 are of order 4, A2, B and AB are of order 2
(A2B)(A2B)  A2(BA)(AB)  A2A3BAB  ABAB  I so A2B is of order 2
(A3B)(A3B)  A3A3AB2B  A2BA2B  I so A3B has order 2
Obviously I has order 1
(iv) Using results already established we can construct 
the table for I, A2, B, A2B
From the table we see that we have closure, an identity and
every element has an inverse. 
Associativity is inherited from G hence  isI, A2, B, A2B
a subgroup  of G
(iv) other two subgroups of order 4 are I,A,A2, A3
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and I, A2, A3B, AB
The first is obviously a cyclic group of
order 4 
and we verify the other by constructing a
table
verifying that it is a subgroup
(vi)  is cyclic, the other twoI,A,A2, A3
are not
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Markov Chains
A MARKOV CHAIN is a sequence of events where the probability of an outcome at one stage depends
only on the outcome of the event at the previous stage.
A TRANSITION matrix consists of the TRANSITION PROBABILITIES (The probabilities of passing
from one stage to the next) Each column of the transition matrux is a PROBABILITY VECTOR
If P is the transition matrix and p a particular probability vector representing the probabilities at one stage
then Pp represents the probabilities at the next stage, P2p the probabilities at the next but one
stage and so on.
Powers of the transition matrix give conditional probabilities of moving from one outcome to another
over 2, 3, 4, ... steps.
Ex. A study of the weather over a long period of time suggests that if today is sunny then there is a 70%
chance that tomorrow will also be sunny whilst if today is cloudy then there is an 80% chance that
tomorrow will also be cloudy. It is sunny on a particular Saturday, what is the chance that it will be 
(a) sunny on the following Monday
(b) cloudy on the following Tuesday.
(c) sunny on the following Wednesday.

We first form a transition matrix P  
sunny cloudy

sunny 0.7 0.2
cloudy 0.3 0.8

(a) Monday involves two steps so probabilities are given by P2 
0.55 0.3
0.45 0.7

so chance that it is sunny on Monday is 0.55

(b) Tuesday involves three step so we require P3 
0.475 0.35
0.525 0.65

so chance that it is cloudy on Tuesday is 0.525

(c) Finally, Wednesday involves four steps so P4 
0.4375 0.375
0.5625 0.625

so chance that it is sunny on Wednesday is 0.4375
If a Markov chain has more that two states at each stage then the transition matyrix will be larger e.g.  
3  3 for three possible outcomes at each stage and so on but the general principle remains the same.
It is for this reason that you are advised that a calculator that will handle matrix multiplication is
essential when studying this topic.
For certain transition matrices P we find that as n  , Pn  a matrix whose columns are identical.
These columns give the EQUILIBRIUM PROBABILITIES and show that, in the long run, the
probabilities of each state are independent of what happened at the beginning.

In the example above we find that the equilibrium matrix is
0.4 0.4
0.6 0.6

i.e. this means that there is a 40% chance of a sunny day at any time in the distant future.
This matrix can be found either by iteration i.e. Raising P to higher and higher powers, or as follows

If p p1

p2
is the equilibrium vector then we must have Pp p

Again using the same example as before this gives 0.7p1  0.2p2  p1 and 0.3p1  0.8p2  p2

i.e. 0.2p2  0.3p1  0 and 0.3p1  0.2p2  0 also of course p1  p2  1 so eliminating p2 we have
0.2  0.2p1  0.3p1  0  0.5p1  0.2  p1  0.4 and p2  0.6
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Run length of a Markov chain
Still using our sunny/cloudy example, if it is sunny on Monday, what is the probability that it is sunny
for the rest of the week, i.e. up to and including Saturday but cloudy on Sunday.
This is easily found to be 0.75  0.30  0.050421
Generalising, the probability that it is sunny for the next X days is P(X  r)  0.7r  0.3
i.e. the probabilities are the terms of a geometric sequence. So we can easily find the expected run length

by evaluating
1



rP(X  r)  0.3  0.7  2  0.3  0.72 3  0.3  0.73  ...

which is 0.3  0.7 times the binomial expansion of (1  0.7)2

 hence, expected number of further sunny days after a sunny day is 0.30.7
0.32  0.21

0.09  2.33
Generalising, if  is the probability that the system remains in the same state at the next stage then the
expected run length for that state is (1)

(1)2  
1

Note that this is the expected (mean) number of FURTHER consecutive days that the initial state
remains unchanged and is one less than the number of times the state is repeated.
Classification of Markov Chains
A Markov chain is said to be REGULAR if some power of the transition matrix contains only

 In a regular Markov chain it is possible to pass from any state to any other state andpositive entries.
there is a unique limiting probability vector.
Random Walks
If it is possible to assign an order to the various states so that from any one state it is only possible to
move to a limited number of other states then this can be described as a RANDOM WALK.
Periodic chains
If P is a transition matrix and for some value of n    Pn1  P then the Markov chain is PERIODIC with
PERIOD n.

Ex. P 
0. 0.5 0
1 0 1
0 0.5 0

 P2 
0.5 0 0.5
0 1 0

0.5 0 0.5
and P3 

0 0.5 0
1 0 1
0 0.5 0

 P

Note that P2n  Pn and P2n1  P2n1 for all n so periodic with period 2
Reflecting Barriers
If at some stage, the outcome is inevitable then we have a REFLECTING BARRIER.
Ex. The example above represents the following situation. A bag contains 2 balls, both of which are
black or white.
A ball is drawn at random and replaced with one of the opposite colour. The transition matrix for the

number of black balls in the bag at each stage is P 

0b 1b 2b
0b 0 0.5 0
1b 1 0 1
2b 0 0.5 0

As we saw above if there are 0 black balls in the bag then at the next stage there must be one and
similarly if there were 2 black balls in the bag then at the next stage there must be only one.
We therefore have two reflecting barriers. The states of 0 black balls or 2 black balls.
A zero in the leading diagonal of a transition matrix with a 1 above or below it indicates a reflecting

.barrier
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Absorbing States
If at some stage we arrive at some state where it is impossible to leave that state then we have an
ABSORBING BARRIER.
Ex. A scientist is studying a colony of a particular organism, and classifies the individuals as being in one
of three states, well, ill or dead. Which of these is an absorbing state?
If at some stage the organism is dead then it cannot change that state so this is the absorbing state.
Ex. A decorative light glows in one of four colours, purple,blue,red and yellow. The colour changes at
the end of a fixed time interval and the transition matrix is as follows:

P B R Y
P 0 0.2 0.4 0
B 1 0 0.2 0
R 0 0.4 0 1
Y 0 0.4 0.4 0

(i) Explain the significance of the zeros in the leading diagonal of the matrix.
(ii) Which colour occurs most often in the long run? What proportion of the time does the light show 
that colour?
The light develops a fault. Once it shows blue it gets stuck there and can no longer change to any other
colour.
(iii) Write down the new transition matrix and describe any features that the chain now has.
(iv) When the fault occurs, the light is showing red. What is the probability that seven intervals later it is
still not showing blue?
(i)     The zeros show that the light never shows the same colour in two successive intervals.

P B R Y
P 0 0.2 0.4 0
B 1 0 0.2 0
R 0 0.4 0 1
Y 0 0.4 0.4 0

p1

p2

p3

p4



p1

p2

p3

p4

 0.2p2  0.4p3  p1, p1  0.2p3  p2, 0.4p2  p4  p3,

(ii)      0.4p2  0.4p3  p4 so 0.2p2  0.4p3  p2  0.2p3  0.6p3  0.8p2 so 3p3  4p2

hence, p1  0.55p3 and p4  0.7p3 so p1 : p2 : p3 : p4  0.55 : 0.75 : 1;0.7 so p3 is the greatest
i.e. red occurs most frequently ,with probability 1

3

(iii) M 

P B R Y
P 0 0 0.4 0
B 1 1 0.2 0
R 0 0 0 1
Y 0 0 0.4 0

Blue is an absorbing state.

(iv)  so probability of blue after 7 intervals is  0.9488 and so theM7 

P B R Y
P 0 0 0.0256 0
B 1 1 0.9488 0.936
R 0 0 0 0.064
Y 0 0 0.0256 0

probability of not showing blue is 0.0512
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