37) Kirchoff's second law states that in any closed loop the \qquad of the
\qquad is equal to the e.m.f of the source. This law is a consequence of the conservation of \qquad
38) For resistors in series $R_{t}=$ \qquad In parallel $1 / \mathrm{R}_{\mathrm{t}}=$ \qquad
39) What is the resistance of this network

40) Use kirchoff's second law to calculate the current I in the circuit below

41) In a circuit with more than one cell e.m.f's are \qquad
42) In practise all sources of e.m.f have an \qquad resistance
43) The voltmeter reads the voltage, V across the load resistance and is called the \qquad p.d. It is less than the e.m.f. of the source because there is a potential difference across the \qquad of the source.
From Kirchoff's second law E = IR + \qquad

$$
\mathrm{E}=\mathrm{V}+\mathrm{Ir}
$$

If this is rearranged so $\mathrm{V}=-\mathrm{Ir}+\mathrm{E}$
a graph of \qquad against \qquad would give a
line with a gradient equal to the \qquad
and the y intercept equal to the \qquad
44) This is a \qquad circuit containing

a \qquad and a \qquad resistor.
$\mathrm{V}_{\text {out }}=$ \qquad . If the temperature increases the thermistor resistance \qquad and the p.d.across R_{1} will drop and the $\mathrm{V}_{\text {out }}$ will increase making the lamp
45) In the potential divider circuit what is $V_{\text {out }}$ if $V_{\text {in }}=$ $20 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $\mathrm{R}_{2}=25 \Omega$?
46) What will happen to the lamp if R_{2} is increased and why?
47) Wave frequency is defined as the number of waves per \qquad .
48) Two wave are in phase if they are in \qquad with each other. Phase difference is a measure of how out of \qquad two waves could be. It can be described as a fraction of a \qquad eg $\lambda / 2$ or as an angle 180° for example.
49) On this wave indicate the amplitude, wavelength and two points with zero displacement
50) The period, T of a wave is the time for
 one \qquad and $\mathrm{T}=$ \qquad
51) The speed of a wave $v=$ \qquad
52) Refraction of a wave occurs because of a change in \qquad when it enters a different medium. Diffraction is the \qquad out of waves through a \qquad . Diffraction is greatest when the gap width is equal to
37) sum p.d.'s energy
38) $R_{1}+R_{2} \quad 1 / R_{1}+1 / R_{2}$
39) For parallel components
$1 / R=1 / 10+1 / 10$
$1 / \mathrm{R}=2 / 10$ so $\mathrm{R}=5 \Omega$
total resistance $=10+5=15 \Omega$
40) $10=\mathrm{Ix} 2+\mathrm{Ix} 2+\mathrm{Ix} 2=6 \mathrm{I}$
so $\mathrm{I}=10 / 6=1.67 \mathrm{~A}$
41) Combined
42) Internal
43) terminal internal resistance

Ir

V I straight internal resistance e.m.f
44) potential divider
thermistor variable resistor
$\mathrm{V}_{\text {out }}=\underline{\mathrm{V}}_{\text {in }} \underline{\mathrm{R}}_{2} \quad$ drops \quad brighter
45) $\mathrm{V}_{\text {out }}=\underline{\mathrm{V}}_{\text {in }} \underline{\mathrm{R}}_{2}=20 \times 25 /(500+25)=0.95 \mathrm{~V}$
$\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
46) Gets brighter because $V_{\text {out }}$ increases
47) second
48) step step
wavelength

50) cycle or wave, $T=1 / \mathrm{f}$
51) v = f $\lambda \quad \lambda$ - wavelength
52) speed
spreading gap wavelength
53) Two properties that all electromagnetic waves share is that they all travel at the speed of \qquad and they are all
54) The order of the electromagnetic spectrum in increasing wavelength is gamma $\left(10^{-15} \mathrm{~m}\right)$ \qquad
55) What is the frequency of gamma radiation with a wavelength of 10^{-15} m ? $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$
56) Electromagnetic waves with the largest \qquad have the most energy. Ultra-violet frequencies and above can \qquad atoms to make ions. This changes their chemistry and may lead to \qquad . Infra-red, microwave and \qquad have a \qquad effect on objects. Microwaves of the right frequency can cause water molecules to resonate causing rapid heating.
57) UV part of the spectrum is split into UV-A,UV-B, UV-C, UV-A causes skin to \qquad , UV-B causes \qquad UV-C is mostly absorbed by \qquad in the atmosphere
58) Light is a \qquad wave of different \qquad . In unpolarised light vibrations are in \qquad planes
Polarised light is light where vibrations are in a single \qquad (typically vertical or \qquad _). Light can be polarised using a \qquad .

58b) Light emerging from this po-
lariser is \qquad polarised
polariser
59) When light reflects from a surface it is \qquad polarised. Sunglasses contain a polariser which eliminates this polarised light.
60) The intensity of a wave is the power per \qquad metre. Its units are
\qquad . As an equation Intensity I = \qquad -
61) The intensity of a wave is proportional to \qquad ${ }^{2}, I \propto A^{2}$
62) If the amplitude of a wave doubles its intensity \qquad . If the amplitude of a wave halves its intensity reduces by \qquad
63) If a wave has amplitude A_{1} and intensity I_{1} and its amplitude is changed to A_{2} then we can write $I_{1} / I_{2}=$
64)

65) The principal of superposition states that when two or more waves meet. \qquad
66)

67)
 These waves are in
\qquad . If combined there would be \qquad interference

These waves are of phase by \qquad . If combined there would be \qquad interference
68) For observable interference wave sources must be \qquad
69) Coherent waves are waves with the same \qquad
70) The path difference between two waves is the difference in \qquad the two waves have travelled.
71) If the path difference between coherent waves is equal to a whole number of \qquad ($\mathrm{n} \lambda$) constructive \qquad occurs
72) If the path difference between two coherent waves is equal to $n \lambda / 2$ interference occurs
53) light transverse
54) $\mathrm{x} \operatorname{ray}\left(10^{-10} \mathrm{~m}\right)$, uv($10^{-8} \mathrm{~m}$), visible ($5 \times 10^{-7} \mathrm{~m}$) infrared ($10^{-5} \mathrm{~m}$), microwave $\left(10^{-2} \mathrm{~m}\right)$, radio $\left(10^{-1+} \mathrm{m}\right)$
55) $\mathrm{f}=\mathrm{c} / \lambda=3 \times 10^{8} / 10^{-15}=3 \times 10^{23} \mathrm{~Hz}$
56) frequency ionise cancers heating
57) wrinkle, cancer, ozone
58) transverse frequencies all
plane horizontal polariser

58b) vertically
59) partially
60) square $\quad \mathrm{Wm}^{-2}, \quad I=P / A$
61) amplitude
62) quadruples a quarter
63) $I_{1} / I_{2}=A_{1}{ }^{2} / A_{2}{ }^{2}$
64) incident
65) the resulting displacement is the algebraic sum of the individual displacements
66) phase constructive
67) out 180° destructive
68) coherent
69) wavelength
70) distance
71) wavelengths interference
72) destructive

76) To observe interference of microwaves the same setup is used except a microwave \qquad emits the signal. A barrier with two slits creates two \qquad waves. These interfere and the interference pattern detected with a \qquad detector.
77) In youngs slit experiment a laser is strikes a black slide with two parallel slits. This creates two \qquad waves which interfere. The youngs slit equation is $\lambda=$ \qquad , where a is
\qquad , x is \qquad and D is \qquad
78) In youngs slit experiment if slit separation decreases fringe separation \qquad . If the slit screen distance increases the fringe separation \qquad
79) Youngs slit experiment is confirmation of the wave like nature of light because it is explained by the principle of \qquad of waves.
80) A diffraction grating is a material with many slits. At each slit
\qquad occurs. Diffracted waves then interfere to produce an interference pattern

interference pattern
81) The diffraction equation is $\operatorname{dsin} \theta=$ \qquad . Where d is
\qquad in metres, n is \qquad and θ is the angle between the zeroth order (straight through) and the order number
82) If a diffraction grating has 3000 lines per cm the separation of each line = \qquad cm = \qquad m. If the first order maximum is detected at an angle of 10° as shown on the diagram what is the wavelength of the light?
83) Using a diffraction grating to measure the wavelength of light is better than youngs slit experiment because maxima are very
\qquad and \qquad . The maxima are widely separated and the angle can be measured very \qquad . In yougs slit experiment the separation of two slits needs to be measured - a big \% inaccuracy. In a grating their are many slits and their separation d can be worked out accurately
73) $\lambda / 2$ destructive 180
74) zero phase
75) $n \lambda / 2 \quad n \lambda$ phase
76) transmitter coherent microwave
77) coherent $\quad \lambda=a x / D$ slit separation, fringe separation slit to screen distance
78) increases, increases
79) superposition
80) diffraction
81) $n \lambda$
slit separation, the order number
$82) 1 / 3000=3.33 \times 10^{-4} \mathrm{~cm}=3.33 \times 10^{-6} \mathrm{~m}$
$\lambda=\mathrm{d} \sin \theta / \mathrm{n}=3.36 \times 10^{-6} \underline{x} \underline{x i n} 10$
1
$=5.8 \times 10^{-7} \mathrm{~m}$
83) bright sharp accurately
84) White light shone through a diffraction grating will produce maxima of all the colours of the \qquad
This happens because different colours have different
\qquad and from $\operatorname{dsin} \theta=n \lambda$ if the wavelength is bigger i.e. red light, the angle for maxima will be bigger

85) White light is shone into this grating and an interference pattern observed. The zeroth order remains \qquad .
86) Label the position of red R for the first order
87) Transverse and longitudinal are classed as \qquad waves. They transfer \qquad and seem to move
Only \qquad can be polarised. Sound cannot be polarised because it is a \qquad wave.
88) Two properties of stationary waves are
(a) \qquad
(b) \qquad

89) The vibrator sends waves down the string which \qquad with reflected waves. At certain frequencies large amplitudes of vibration are observed (resonance). Points of maximum displacement are called \qquad and zero displacement \qquad .
The lowest frequency resonance occurs is called the \qquad .
The next frequency for resonance is call the \qquad harmonic
90) The distance between successive nodes is = \qquad
91) The distance between successive anti-nodes is = \qquad
92) In a vibrating string this frequency is the \qquad harmonic. In terms of wavelength $\mathrm{L}=$
93) In an open ended pipe the closed end is fixed and air cannot vibrate this is a \qquad . If frequency is gradually increased a resonance occurs, (the fundamental). In terms of wavelength $\mathrm{L}=$ \qquad . Increasing the frequency produces the second harmonic and $\mathrm{L}=$ \qquad

L

84) rainbow wavelengths
85) white

R
87) progressive
energy transverse longitudinal
88) no energy is transferred they do not progress
89) interfere anti-nodes nodes
fundamental
second
90) $\lambda / 2$
91) $\lambda / 2$
92) second
$\mathrm{L}=\lambda$
93) node
$\mathrm{L}=\lambda / 4$
$\mathrm{L}=3 \lambda / 4$

94a) To measure the speed of sound an experimenter changed the length of an air column by dropping or raising a water reservoir. The experimenter started with the air column very short then gradually increased it until maximum volume was heard
(a) sketch the stationary water wave obtained label the node and anti-node)

(b) use these results to work out the speed of sound
frequency $\mathrm{f}=512 \mathrm{~Hz}$ Length $\mathrm{L}=0.16 \mathrm{~m}$
95) Electromagnetic radiation has a wave nature and a \qquad nature.
96) Electromagnetic radiation travels as packets of energy called
\qquad . Each photon has an energy $\mathrm{E}=$ \qquad or $\mathrm{E}=$ \qquad
97) What is the energy of a gamma ray photon with wavelength $10^{-15} \mathrm{~m}$?
98) The electron volt is a much smaller unit of \qquad than the joule
99) The electron volt is defined as the energy gained by an \qquad when accelerated through a p.d. of 1 volt
from $\mathrm{W}=\mathrm{QV}, \mathrm{W}=\mathrm{eV},=1.6 \times 10^{-19} \times 1=1.6 \times 10^{-19} \mathrm{~J}$
100) How many joules is 10 eV ?
101) How many eV's is $2 \times 10^{-18} \mathrm{~J}$?
102) Near the negative plate the electron has an electric potential energy, W . $\mathrm{W}=\mathrm{QV}=\mathrm{eV}$. This electric potential energy is converted to \qquad energy
 as it accelerates towards the positive plate. So eV = $\underline{\mathrm{mv}}^{2}$

$$
2
$$

102b) What will be the velocity of the electron just before hitting if $\mathrm{V}=$ $5000 \mathrm{~V}\left(\mathrm{~m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{Kg}\right)$
103) This apparatus can be used to calculate plancks constant,h.
The voltage is increased until a 6 V
\qquad just starts to flow. At this threshold voltage

energy lost by electron = energy of emitted \qquad
so $\mathrm{eV}=\mathrm{hf}=\mathrm{hc} / \lambda$
so $V=\underline{h c}(1 / \lambda)$
e
If different diodes are used of known wavelength a graph of V against $1 / \lambda$ will give a \qquad line with a gradient = \qquad . Plancks constant $\mathrm{h}=$ \qquad
104) In the photoelectric effect electrons are emitted from a metal surface using electromagnetic waves above a \qquad frequency.
Below this frequency no electrons are emitted no matter how intense.
A wave model of electromagnetic waves cannot explain this because more intensity with a wave model implies more energy.
If the intensity of electromagnetic waves above the threshold frequency is increased \qquad electrons are emitted but the maximum kinetic energy of the ejected electrons remains
\qquad .This is evidence of the particle nature of electromagnetic waves which we call \qquad with energy = \qquad
105) The Einstein photo-electric equation is
where hf is the \qquad ϕ is \qquad
and $1 / 2 \mathrm{mv}^{2}$ is the maximum \qquad of an ejected electron
106) At the threshold frequency $\mathrm{hf}_{\mathrm{o}}=$ \qquad
107) The work function is defined as. \qquad
108) (a) What are the energy of a photons in an electromagnetic wave with wavelength $2.4 \times 10^{-7} \mathrm{~m}$?
(b) If these electromagnetic waves are incident on the surface of a metal whose work function is $2.8 \times 10^{-19} \mathrm{~J}$ calculate the maximum kinetic energy of electrons emitted.
(c) Determine the maximum speed of the emitted photons ($\mathrm{m}_{\mathrm{e}}=$ $9.11 \times 10^{-31} \mathrm{Kg}$)
109) De Broglie suggested if electromagnetic waves could behave like particles could particles behave as \qquad ?
110) Evidence that particles can behave like waves is the
\qquad of electrons through a thin layer of graphite.
111) The De Broglie equation is
112) λ is a wave property, mass is a \qquad property (the product mv is momentum also a particle property)
113) Calculate the de Broglie wavelength of an electron travelling at $10^{7} \mathrm{~ms}^{-1} .\left(\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}\right)$
114) Will the electrons in the previous question be diffracted by solid materials (inter atomic spacing in solid materials is approx $10^{-10} \mathrm{~m}$)

Emmision Spectra

115) White light has a \qquad spectrum (all visible wavelengths are present). A hot gas like neon or sodium will produce a spectrum where only certain wavelengths are emitted.

Absorption Spectra

116) If white light shines through a gaseous element certain frequencies are absorbed and appear as \qquad lines against the continuous spectrum of the white light.
117) When a photon is absorbed an electron is promoted to a higher
\qquad level in the atom. When an electron falls back to a lower
level it emits a \qquad
118) The energy of the emitted photon is equal to the difference in
\qquad level i.e. $h f=E_{2}-E_{1}$
119) If the electron at $\mathrm{n}=1$, the ground state, absorbed a photon of energy 47 ev it would be
120) What would the energy of an emitted photon if it fell from $n=3$
 to $\mathrm{n}=2$?
121) What would the frequency be of the emitted photon?
122) threshold
more

> the same
photons hf
105) $\mathrm{hf}=\phi+0.5 \mathrm{mv}^{2}$
photon energy work function
kinetic energy
106) ϕ
107) The minimum photon energy to just eject an electron
108) $\mathrm{E}=\mathrm{hc} / \lambda=\left(6.63 \times 10^{-34} \times 3 \times 10^{8}\right) / 2.4 \times 10^{-7}$

$$
=8.3 \times 10^{-19} \mathrm{~J}
$$

(b) $0.5 \mathrm{mv}^{2}=\mathrm{hf}-\phi=8.3 \times 10^{-19}-2.8 \times 10^{-19}$

$$
=5.5 \times 10^{-19} \mathrm{~J}
$$

(c) $\mathrm{v}=\sqrt{ }(2 \mathrm{KE} / \mathrm{m})=\sqrt{ }\left(2 \times 5.5 \times 10^{-19} / 9.1 \times 10^{-31}\right)$

$$
=1.1 \times 10^{6} \mathrm{~ms}^{-1}
$$

109) waves
110) diffraction
111) $\lambda=\mathrm{h} / \mathrm{mv}$
112) particle
113) $\lambda=\mathrm{h} / \mathrm{mv}=6.63 \mathrm{x}^{-34} /\left(9.1 \mathrm{x} 10^{-31} \mathrm{x} 10^{7}\right)$

$$
=7.3 \times 10^{-11} \mathrm{~m}
$$

114) yes - wavelength and gaps similar
115) continuous line
116) dark
117) energy
photon
118) energy
119) just removed from the atom
120) $\mathrm{hf}=\mathrm{E}_{2}-\mathrm{E}_{1}=-13-(-22)=9 \mathrm{eV}$
121) $\mathrm{E}=\mathrm{hf}, \mathrm{f}=\mathrm{E} / \mathrm{h}=9 \times 1.6 \times 10^{-19} / 6.63 \mathrm{x}^{-34}$

$$
=2.2 \times 10^{15} \mathrm{~Hz}
$$

