1 (a)	 (i) mass x velocity / mv with symbols defined (ii) 0 = m₁v₁ - m₂v₂ / m₁v₁ = m₂v₂/ 0 = m₁v₁ + m₂v₂ v₁/v₂ = m₂/m₁ or - m₂/m₁ consistent with line above 	1 1 1	[3
	max 1 mark for final expression without line 1		
(b)	(i) $E = 1/2 \text{mv}^2$ (= 1.2 x 10 ⁻¹⁴) $v = \sqrt{(2 \times 1.2 \times 10^{-14}/6.7 \times 10^{-27})}$ $v = 1.9 \times 10^6$ (m s ⁻¹)	1	
	(ii) (mv =) 6.7 x 10 ⁻²⁷ x 1.9 x 10 ⁶		
	$mv = 1.3 \times 10^{-20} (kg m s^{-1})$	1	
	(iii) $1.3 \times 10^{-20} = \text{mv} = 4.0 \times 10^{-25} \text{ v}$ ecf	1	
	or 3.9 x 10 ⁻²⁵ v if mass of α-particle is subtracted		
	$v = 3.3 \times 10^4 \text{ (m s}^{-1)}$	1	
	or 6.7 x $10^{-27}/4.0$ x 10^{-25} = $v/1.9$ x 10^6	1	"
	$v = 3.2 \times 10^4 \text{ (m s}^{-1})$	1	[5
(c)	(i) X is about 15 mm from P	1	
(-,	(ii) XP arrow direction is a straight line through P	1	
	(iii) N is about 0.3 mm from P; ecf from (b) (iii)	1	[3]
	-		_
2 estion	Expected Answers	Mar	
(a)	Same speed (mandatory) as energy transfer is the same / some further qualification, e.g. (increase in) k.e = (loss in) p.e./car falls through same	2	[2]
	height		
(b)	(i) $h = 1.2 \sin 45 = 0.85 \text{ m}$	1	
	mgh; = 0.05 x 9.8 x 0.85 = 0.42 (J) accept g =10ms ⁻²	2	
	(ii) $1/2mv^2 = 0.42$ ecf or $v^2 = 2gh$	1	
(a)	$v = 4.1 \text{ (m s}^{-1})$ (i) $m(v + 2v/3)$; = 5m = 0.25; kg m s ⁻¹ /N s	1 3	[5]
(c)	(i) $M(V + 2VS)$; = 5M = 0.25, kg M s V/N s (ii) $F = M \Delta V/\Delta t$; = 1.25 (N) ecf c(l)	2	[5]
	(ii) F = III ΔV/Δi, = 1.25 (N) eci c(i)	2	[5] 12
	TOTAL TOTAL		14

(a)	(i)	Two vertical arrows of equal length (by eye) and opposite direction in the		
()	1.7	same vertical line passing through the ball;	1	
		weight/gravity/mg/0.49 N and (normal)reaction/string tension/0.49 N	1	2
	(ii)	gravity; acts on ball and Earth /AW	2	
	• •	contact/reaction forces; between ball and strings/racket	2	4
	(iii)	(resultant force) = ma; = 0.05 x 2 = 0.1 (N)	2	2
(b)	(i)	$v^2 = u^2 + 2gh/ \frac{1}{2} mv^2 = mgh \text{ to give } v^2 = 2gh;$	1	
		$v^2 = 2 \times 9.8 \times 0.8$ to give $v = 4.0$ (m s ⁻¹) accept 3.96	1	2
	(ii)	mv = 0.20 (kg m s ⁻¹) accept 0.198	1	1
	(iii)	2mv = 0.40 (kg m s ⁻¹) accept 0.396	1	1
	(iv)	2mv/t = 8.0 (N) accept 7.92 ecf b(iii)	1	1
		[Total	l	13]

4			and the standard of formals	4		
	(a)		Work = force x distance (moved in direction of force); Power = work/time /AW	1		
			Power = force x distance/time = force x velocity	1	i	3
	(b)	(i)	$P = Fv = 2 \times 10^{6} \times 10$ = 2M /2 x 10 ⁶ (W) give 1 mark for 20(W)		1 1	2
		(ii)	Graph shows F is proportional to 1/v or minimum of two more calculations of P to show same value		1	1
		(iii)	$F = 2 \times 10^6/5 = 4 \times 10^5 (N)$ ecf from $b(i)$		1	1
	(c)	(i)	Resultant force = mass x acceleration; $2 \times 10^5 - 5 \times 10^4 = 3 \times 10^5 a$; $a = 0.5 \text{ (m s}^{-2})$ give max 1 mark for $a = 0.67 \text{ (m s}^{-2})$		1 1 1	3
		(ii)	max. speed when $a = 0 / F = 5 \times 10^4 N$; giving $v = 40$ (m s ⁻¹) from fig 1.1 or by calculation		1 1	2
	-			Total		12
5	(a)	(i)	Line in direction NA		1	
		(ii)	Line passing perpendicular to the tangent at the point of closest approach to N judged by eye		1	2
	(b)	(i)	k.e. = $\frac{1}{2}$ mv ² (= 8 x 10 ⁻¹³) v ² = 2 x 8 x 10 ⁻¹³ /6.7 x 10 ⁻²⁷ = 2.39 x 10 ¹⁴ v = 1.5(45) x 10 ⁷ (m s ⁻¹)		1	2
		(ii)	$mv = 6.7 \times 10^{-27} \times 1.5 \times 10^7 = 1.0(35) \times 10^{-19} \text{ (kg m s}^{-1}\text{)}$,	1	1
	(c)	(i)	m/4, v x 2 so p/2 from b(ii) or use k.e = $p^2/2m$; correct substitution m = m_p to give p = 5 x 10 ⁻²⁰ (kg m s ⁻¹)	with	2	2
		(ii)	(average) force smaller/recoil slower/momentum less/interaction t	ime		
			shorter/angle of recoil different/steeper/AW allow smaller/shorter distance	any 2	2	2
	(d)		$F = (1/4πε_0) Q_1Q_2/r^2$; $Q_1 = 1$ (e), $Q_2 = 97$ (e); correct substitution of figures		2 1	
			giving $F = 3.97 \times 10^{-2} (N)$ accept 0.04 N allow 79e giving 0.032	(N)	1	4
	7			Total		13
6	stion		Expected Answers		Mar	_
	а	i ii	Work = force x distance ;moved in direction of force; power = work/time;AW		1	2
			power = force x distance/time = force x velocity		1	2
	þ	i	k.e. = $\frac{1}{2}$ mv ² ;		1	
		ii	= $0.5 \times 120 \times 25 \approx 1500 \text{ (J)}$ P = Fv or $200 = F \times 5$; F = $200/5 = 40 \text{ (N)}$	•	1	2
		n iii	Fd = 1500; so d = 1500/40 = 37.5 (m) ecf from b(i) and (ii)			2 2
	¢		$\Delta p.e./second = mgvsin \theta = 120 \times 9.8 \times 5 \times 0.033$; = 194 (W) n.b. allow using 1/30 ans: 196 (W)		2	-
			AW, e.g.: force downhill $F = mgsin \theta$; extra power = Fv, etc. P = 200 + 194 = 394 (W)			
			· - 200 · 104 - 054 (VV)	Total	1	3 13

Question		Expected Answers	Mark	S
9 a	1 } 	48 (N) 0.25 (s) estimating area under graph or mean F; 6.5 ± 1 a = F/m or = $48/0.5$; = 96 (m s ⁻²) ecf a(i) Ft = mv; v = $a(ii)/0.5 = 2a(ii)$ (m s ⁻¹) ecf a(ii) k.e. = $\frac{1}{2}$ mv ² or = $\frac{1}{2}$ x 0.5 x b(ii) ² ; = $a(ii)^2$ (J) ecf b(ii) Ft = mv ± mu or = 0.5 (8 ± 14);	1 2 2 2 2	3
·		$F = 11/0.18$; = 61(.1) (N) aliter mean $a = 12(2)$ m s^{-2} $F = ma$	2	3 12
Question		Expected Answers	Mar	·ks
10 a	i ii iii iv i ii	3.8 ± 0.3 (N s) momentum (of the ball) accept impulse mv = 3.8 or v = 3.8/0.16; = 23 (m s ⁻¹) ecf a use F = ma giving 24 = 0.16a; a = 150 (m s ⁻²) exponential e.g. $h_1/h_2 = e^k = 2.1(5)$; giving k = 0.74 to 0.76 or substitution from a line of table; gives 0.748, 0.757 or 0.746 1.5 (m)	1 1 2 2 1	6
	iv	Δ k.e. = mg Δ h; = 0.16 x 9.8 x 0.38 (= 0.60 J) Total	2	6 12
Question		Expected Answers	M	arks
11 a b	i	(mv =) 300; kg m s ⁻¹ or N s (The speed of the bar increases so) it is accelerated forwards/AW; this requires a resultant (forward) force/F = ma idea	2 1 1	2
	ii iii iv	Arrow in direction of motion/to right $(t = s/v = 3.0/0.60 =) 5.0 \text{ s}$ $F = m (v - u)/t ; = 500 \times 1.2/5.0 ; = 120 (N)$ ecf b (iii)	1 1 3	7
Questio	Question Expected Answers		Ma	arks
12 a	i ii iii iv	$\frac{1}{2}$ mv ² = 7.6 x 10 ⁻¹³ to give v = $\sqrt{(2 \times 7.6 \times 10^{-13} / 6.6 \times 10^{-27})}$ evidence of calculation v = $\sqrt{2.3 \times 10^{14}}$ or = 1.52 x 10 ⁷ (m s ⁻¹) (electrostatic) repulsion between charged particles slows alpha and accelerates nucleus/AW momentum of system is conserved(as no external forces) sum of momenta of alpha and nucleus must always equal initial momentum of alpha/be a constant so speed of nucleus can be calculated as momentum = mv max 3 mv = MV or V = 6.6 x 10 ⁻²⁷ x 1.52 x 10 ⁷ / 3.0 x 10 ⁻²⁵ ; = 3.3 x 10 ⁵ (m s ⁻¹) Ft = 2mv or 9.0 x t = 2 x 6.6 x 10 ⁻²⁷ x 1.52 x 10 ⁷ ; t = 2.2 x 10 ⁻²⁰	1 1 1 1 1 1 1 2	9
	-	(s) give 1 mark for change in momentum = impulse or $\Delta mv = F(\Delta)t$	_	-

```
13
                                                     Mass x velocity/mv with symbols defined
                 İ
                                                                                                          1
                ii
                                                                                                          1
                                                               0 = m_A v_A \pm m_B v_B or m_A v_A = m_B v_B
                                                                                   v_A/v_B = \pm m_B/m_A
                                                                                                          1
                                                                                                                3
                                                max 1 mark for final expression without line 1
                                      v_A = (10/5 = ) 2.0 \text{ (ms}^{-1}) \text{ and } v_B = (10/10 = ) 1.0 \text{ (m s}^{-1})
          b
                                                                                                          1
                 i
                                     t_1 = 3.0/2.0 = 1.5 (s)
                ii
                                                                                             ecf b(i)
                                                                                                          1
                                                                    x = 2.1 - 1.0 \times 1.5 = 0.6 (m)
                iii
                                                                                                          1
                                                    v = v_B + (5/50)v_A = 1.0 + 0.2  (= 1.2 m s<sup>-1</sup>)
                iν
                                                                                                          1
                                                                         t_2 = t_1 + 0.6/1.2 = 2.0 (s)
                                                                                                          1
                ٧
                νi
                                               At collision the container (and fragments) stop
                                                                                                          1
                           By conservation of momentum, total momentum is still zero/AW
                                                                                                          1
                      straight lines from (0,0) to (1.5,0); (1.5,0) to (2.0,0.1); (x,0.1) for all x
               vii
                                                                                                          3
                                                                                                               10
                     Total
                                                                                                               13
   Question
                          Expected Answers
                                                                                                        Marks
                                                                                                        1
                           mgh or 0.014 x 9.8 x h;
 14
          а
                          = 0.22 \text{ J so h} = 1.6 \text{ m}
                                                                                                        1
                                                                                                               2
          b
                          k.e. increases:
                                                                                                        1
                           at a decreasing rate
                                                                                                        1
                                                                                                               2
                          \frac{1}{2} mv<sup>2</sup> = 0.11
                  i
                                                                                                        1
          С
                          v = \sqrt{(0.11 / 0.007)} = (3.96 \text{ m s}^{-1})
                                                                                                        1
                          F = mg = 0.014 \times 9.8 = 0.137 \text{ or } 0.14 \text{ (N)}
                  ii
                                                                                                        1
                  iii
                          Fv = mgv \text{ or } 0.14 \times 4.0
                                                                                                        1
                          = 0.54 to 0.56 (W) ecf c(ii)
                                                                                                        1
                                                                                                               5
                          k.e. after bounce = 0.088 J giving u = \sqrt{(0.088/0.007)} = 3.55 m
          d
                                                                                                        1
                                                                                                        1
                          change in momentum = m (v ± u)
                                                                                                        1
                           = 0.014(7.55) = 0.11;
                                                                                                        1
                                                                                                               4
                           kg m s<sup>-1</sup>/N s
                                                                                               Total
                                                                                                               13
   Question
                        Expected Answers
                                                                                                      Marks
15
                        Using F = ma gives P = 3ma hence a = P/3m
                                                                                                         1
         а
              ii
                        P/3
                                                                                                         1
              iii 1
                        P/3m
                                                                                                         1
                        P/3
                                                                                                         1
                 2
              iv 1
                        P/3
                                                                                                         1
                 2
                        2P/3
                                                                                                         1
                                                                                                               6
                        mu = mv_1 + mv_2
1/2mu^2 = 1/2mv_1^2 + 1/2mv_2^2
         b
              i
                                                                                                         1
                                                                                                         1
                        some details of algebra/substitution to be shown resulting in e.g.
                                                                                                               3
              ii
                                                                                                         1
                        u = v_2 and u^2 = v_2^2
                        all momentum is passed to block 2,( block 1 stops); then
         С
              i
                                                                                                         1
                        momentum is passed to block 3 (so block 2 does not move)/AW
                                                                                                         1
                        or argument in terms of k.e.
                        block 1 bounces back; and blocks 2 & 3 move (to right/together)
                                                                                                         2
              ii
                                                                                                               4
                                                                                                              13
                                                                                              Total
```

Question		ion	Expected Answers	Mar	ks
16	а	i	area under curve (= momentum gained) Ft = (change in) momentum/AW	1	
		ii	taken as two triangles of base 3 ms and height 900 N gives 2.7 (N s) or count squares	1	
		iii	N = kg m s ⁻² so N s = kg m s ⁻¹ or momentum = mv unit kg m s ⁻¹ (Δ) mv = Ft unit N s	1	
		iv1 2	area = 2.7 = mv = 0.06v giving v = 45 (m s ⁻¹) F(max) = 900 = ma = 0.06a; a = 15000 (m s ⁻²)	1	7
	b	i	mu + mv = 0.06 (40 + 38) = 4.68 (kg m s-1)	1	1
		ii iii	Δ k.e. = $1/2$ m($v^2 - u^2$) = 0.03 ($40^2 - 38^2$); = 4.68 (J) F = Δ p/ Δ t = 4.68/0.012; = 390 (N) ecf	2	5
			Total	_	12
17	а	i	momentum before= 2mv - 3mv = - mv momentum after = 4mv – m5v = - mv	1	2
		li	initial k.e. = 2.5 mv ² ; final k.e. = 14.5 mv ² (so Δk.e. = 12 mv ²)	2	2
		iii iv	2 1 2 1 14 12	1	2 1