Jan M2

1) $K E_{\text {lost }}=W d$ a jamst R es $\Rightarrow \frac{1}{2}(4) 25^{2}=R \times 200$

$$
\Rightarrow R=6.2 \mathrm{SN}
$$

2)

b)

$$
\begin{aligned}
R f \lambda=0 \quad \frac{80000}{v}=1000+\frac{1500 y}{12} & \Rightarrow v=\frac{80000}{2225} \\
& \Rightarrow v=36 \mathrm{~ms}^{-1}(2 \mathrm{sf})
\end{aligned}
$$

c) Resistance is likely to increase on the speed increases.
3)

$$
\begin{aligned}
& v=3 t^{2} i+(6 t-4) ; \quad a=\frac{d v}{d t}=6 t i+6 j \\
& t=2 \quad a=12 i+6 ; \Rightarrow|a|=\sqrt{12^{2}+6^{2}}=6 \sqrt{5} \\
& f=m a \Rightarrow|f|=0.3 \times 6 \sqrt{5}=4.02 \mathrm{~N}(3 \mathrm{sf})
\end{aligned}
$$

b)

$$
\begin{aligned}
& s=\int v d t=\left(t^{3}+c_{1}\right) i+\left(3 t^{2}-4 t+c_{2}\right) ; \\
& t=0 s=3 i-4 j \Rightarrow c_{1}=3, c_{2}=-4 \\
& t=4 s=(64+3) i+\left(3 \times 4^{2}-4^{2}+-4\right) j=67 i+28 j \mathrm{~m}
\end{aligned}
$$

4)

mass per unit anea $=u$
(1) $M=4 a^{2} l \quad g,(2 a, 0)$
(2) $M=44 a^{2} u \quad g_{2}(\bar{x}, 0)$
(1) +2)

$$
M=48 a^{2} u \quad g_{H+2}\left(\frac{8}{3} a, 0\right)
$$

$$
\begin{aligned}
& \text { y } 4 a^{2} \lg \times 2 a+44 a^{2} \lg \times \bar{x}=48 a^{2} \log \times \frac{8}{3} a \\
& \Rightarrow 8 a+44 \bar{x}=128 a \Rightarrow 44 \bar{x}=120 a \Rightarrow \bar{x}=2.72 a
\end{aligned}
$$

b)

$$
\begin{aligned}
& 2 y u_{1 g} \times 5 \alpha=M_{g} \times \frac{3}{11} \alpha \\
& =5 u=\frac{3}{11} \Rightarrow u=\frac{3}{55}
\end{aligned}
$$

5) $\sin \theta=\frac{3}{5}$

A^{2}

$$
\begin{aligned}
& \cos \theta=\frac{4}{5} \\
& \tan \theta=\frac{3}{4}
\end{aligned}
$$

$\Rightarrow 5 w(a+(2 a-x) \times 2)=6 a \times T$
$\Rightarrow \quad \frac{5 w(5 a-2 x)}{6 a}=T$

$$
\begin{aligned}
& R f \uparrow=0 \Rightarrow Y+\frac{3}{5} T=3 W \Rightarrow \frac{3}{5} T=3 W-\frac{7}{6} W \\
& \Rightarrow \frac{3}{5} T=\frac{11}{6} W \Rightarrow T=\frac{55}{18} W \\
& \therefore \frac{55}{18} W=\frac{5 x(5 a-2 x)}{6 a} \Rightarrow \frac{11}{18} \times 6 a=5 a-2 x \\
& \Rightarrow \frac{11}{3} a=5 a-2 x \Rightarrow 2 x=\frac{4}{3} a \Rightarrow x=\frac{2}{3} a
\end{aligned}
$$

c)

$$
\begin{aligned}
\overrightarrow{R F}=0 \quad X=\frac{4}{5} T=\frac{4}{5}\left(\frac{55}{18} w\right) \Rightarrow x & =\frac{44}{18} W \\
X & =\frac{22}{9} w
\end{aligned}
$$

6)

$$
\begin{aligned}
& p \underset{\rightarrow v_{p}}{m \rightarrow u} Q \underset{v_{q}}{m \rightarrow 0} \quad e=\frac{v_{q-}-v_{p}}{u} \Rightarrow e u=v_{q}-v_{p} \\
& C L M \Rightarrow m u=v_{p}=v_{q}-e u \\
& \Rightarrow u+e u=3 v_{p}+2 o v_{q} \Rightarrow u=v_{q}-e u+2 v_{q} \\
& \Rightarrow v_{q}=\frac{1}{3} u(1+e)
\end{aligned}
$$

b)

$$
\begin{aligned}
& V_{p}=\frac{1}{3} u(1+e)-e u \frac{\times 3}{\times 3}=\frac{1}{3} u(1+e-3 e) \\
& \therefore V_{p}=\frac{1}{3} u(1-2 e) \\
& V_{p}>0 \Rightarrow \frac{1}{3} u(1-2 e)>0 \Rightarrow 1-2 e>0 \\
& \Rightarrow 1>2 e \Rightarrow e<\frac{1}{2} \quad\left(0<e<\frac{1}{2}\right)
\end{aligned}
$$

C)

$$
\begin{gathered}
e=\frac{1}{4} \Rightarrow \quad V_{p}=\frac{1}{3} u\left(1-2\left(\frac{1}{4}\right)\right)=\frac{1}{6} u \\
V_{q}=\frac{1}{3} u\left(1+\frac{21}{4}\right)=\frac{5}{12} u
\end{gathered}
$$

(2)

$$
\begin{aligned}
& \text { UE before }=\frac{1}{2} m(u)^{2} y \\
& U E \text { after }=\frac{1}{2} m\left(\frac{1}{6} u\right)^{2}+\frac{1}{2} 2 m\left(\frac{5}{12} u\right)^{2}=\frac{3}{16} m u^{2} \\
& \Rightarrow K E_{\text {lost }}=\frac{5}{16} m u^{2}
\end{aligned}
$$

d) Heat, Som.
7) (vi) $1 u=80 \sin 60 \quad a \lambda=-9.8 \quad v \uparrow=0$

$$
v^{2}=u^{2}+2 a s \Rightarrow 0=4800-19.6 s \Rightarrow S=244.9 \Rightarrow 265_{\text {m above }}
$$

b) $v \uparrow=u \uparrow+a t \Rightarrow 0=40 \sqrt{3}-9.8 t \Rightarrow t=7.1 \sec (2 s t)$
c)

$$
\begin{aligned}
& \overrightarrow{\mathrm{Vel}}=80 \cos 60=40 \\
& \vec{\rightarrow} 40: \overrightarrow{\mathrm{V}}^{\sqrt{q}}: \xrightarrow{(100}: 80
\end{aligned}
$$

$$
\begin{aligned}
\text { CLM } \Rightarrow 100 \times 40=40 \mathrm{Vq} & +60 \times 80 \\
\Rightarrow-800=40 \mathrm{Vq} & \Rightarrow \mathrm{Vq}=-20 \\
& \Rightarrow \text { speed } Q=20 \mathrm{~ms}^{-1}
\end{aligned}
$$

d) (B) $\vec{H} \quad$ Vel $=40, t=7.1 \ldots \Rightarrow \overrightarrow{O B}=282.783 \ldots$

$$
\text { (Q) } \begin{array}{ll}
u \downarrow & =0 \quad S=u t+\frac{1}{2} a t^{2} \\
a \downarrow & =9.8 \quad 265 \ldots=4.9 t^{2} \quad \Rightarrow t=7.35 \ldots \\
S \downarrow & =265 \ldots \\
& G=20 \quad t=7.35 \Rightarrow B C=147.052 \ldots \\
\therefore O C & =136 \mathrm{~m}
\end{array}
$$

