

AS Chemistry Unit 1		
lsotopes are atoms with the same number of protons but different numbers of neutrons. Electrons decide the chemical properties of a n element. Isotopes have the same electronic arrangement, so they have the same chemical properties.	Relative mass is 1 and has a charge of +1	
The first ionisation energy is the energy required to form 1 mole of positive gaseous ion from 1 mole of gaseous atoms.	Relative mass is 1 and has a charge of 0	
The second ionisation energy is the energy required to from 1 mole of di-positive gaseous ion from 1 mole of positive gaseous ions	Relative mass is 1 over 2000 and has a charge of -1.	
•Nuclear charge •Distance from nucleus (atomic radius) •Shielding	Is the number of protons in the nucleus, all atoms of the same ele ment have the same proton number.	

AS Chemistry Unit 1 CramStudy this set online at: <u>http://www.c</u>	ram.com/flashcards/as-chemistry-unit-1-20123
Nuclear charge	Relative atomic mass:
Distance from nucleus (atomic radius)	Relative isotopic mass
Shielding	Relative molecular mass
Trends of 1st Ionisation energies:	Mass Spectrometer

AS Chemistry Unit 1	ram.com/flashcards/as-chemistry-unit-1-20123
Relative atomic mass is the average mass of an atom based on the c-12 carbon atom with a value of 12.	The more protons in the nucleus, the more positively charged the n ucleus, so the attraction for the electrons is greater.
Relative isotopic mass is the average mass of an isotope based on the c-12 carbon atom with a value of 12.	The closer the electron to the nucleus the stronger the charge/attra ction. The closer the nucleus the electron is the smaller the atomic r adius.
Relative molecular mass is the average mass of a molecule or for mula unit based on the c-12 carbon atom with a value of 12.	When the number of electrons between the outer electron and the nucleus increase, the outer electrons feel less attraction towards th e nucleus, this is due to shielding.
The mass spectrometer can be used to find out the relative atomic mass, relative molecular mass, molecular structure etc. It has 5 sta ges. Vaporisation, this is where the sample is turned into a gas usin g an electric heater; lonisation, the particles are bombarded with hi gh energy electrons, removing an outer electron making them posit ive ions; Acceleration, an electric field is used to accelerate positive ion; Deflection, A magnetic field is used to deflect positive ions, the lighter ions are deflected more and finally detection, the magnetic fi eld is slowly increased, so different ions can be detected and a mas s spectrometer produced.	The ionisation energy down a group decrease because as you go d own a group the shielding increases because the number of shells a nd electrons between the outer electron and nucleus increases. The ionisation energy across a period generally increase because the pr oton number in the nucleus is increasing so there is a strong attract ion for electrons which are in the same shell. Across a period the io nisation energy will go up and down, and ionisation energy of an el ement will increase.

AS Chemistry Unit 1 CramStudy this set online at: <u>http://www.cram.com/flashcards/as-chemistry-unit-1-20123</u>		
Percentage yield of a product is never 100% because the actual yie ld is never the same as the theoretical yield because some product may be lost. Percentage yield is actual yield ÷ theoretical yield tim es 100.	 Number of moles = number of particles ÷ Avogadro's constant (6 times 10 to the power of 23). Number of moles = mass of a subst ance ÷ molar mass. Number of moles = concentration times volu me in cm cubed ÷ 1000. Number of moles = volume in decimetres cubed ÷ 24 or volume in centimetres cubed ÷ 24000 	
Allows you to work out how much acid is needed to neutralise an al kali. Methyl orange turns yellow to red when adding acid to an alkali . Phenolphthalein, turns from red/pink to colourless when adding an acid to an alkali.	Empirical formula is the smallest whole number ratio of atoms in a molecule.	
work out the percentage error in titration it is error ÷ reading time s 100.	Molecular formula is the actual number of atoms in a molecule.	
Tells you how wasteful a product is, atom economy is a measure of the proportion on reactant atoms that becomes part of the desired product. To work out atom economy percentage is the molecular fo rmula of the desired product ÷ the sum of molecular masses of all products times 100. Addition reactions have 100% atom economy; substitution reactions have a lower atom economy.	The theoretical yield is the mass of the products that should have b een formed. Theoretical yield is number of moles of the product ti mes molar mass of the product.	

AS Chemistry Unit 1 CramStudy this set online at: <u>http://www.c</u>	ram.com/flashcards/as-chemistry-unit-1-20123
lonic bonding:	Dative covalent bonds:
lonic radius:	Giant molecular structure:
Isoelectronic ions:	Diamonds:
Covalent bonds:	Graphite:

AS Chemistry Unit 1 CramStudy this set online at: <u>http://www.c</u>	ram.com/flashcards/as-chemistry-unit-1-20123
A dative covalent bond is a covalent bond but both the shared elec trons come from just one of the atoms. A double bond comes from 2 shared electrons, and a triple bond results from 3 shared electron S.	lonic bonding is the bonding between cat ions and an ions. The elec trostatic attraction that holds the positive and negative ions togethe r is very strong. lonic compounds form giant ionic lattice structures. A lattice is a regular structure and it is giant because it is the same repeat unit over and over again. lonic compounds conduct electricit y when molten or dissolved, ionic compounds have high melting poi nts and dissolve in water.
Giant molecular structures have a large network of covalent bonds . Giant molecular structures are diamonds, graphite and silicon 4 o xide. This is because carbon and silicon can form four strong coval ent bonds.	lonic radius is the size of an ion. The ionic radius increases as you go down a group. This is because the groups have the same charge , so the ionic radius increases as the atomic number increases; this is because electron shells are being added.
Diamonds is the hardest known substance, it is made up of carbon atoms, and each carbon atom is covalently bonded to four other ca rbons. They arrange themselves in a tetrahedral shape. Diamonds are good thermal conductors because vibrations travel easily throu gh the stiff lattice. It has a very high melting point, it can't conduct electricity because all the outer electrons are held in localised bond s and it doesn't dissolve in any solvent.	lsoelectronic ions are ions of different atoms with the same number of electrons, the ionic radius of a set of ions decrease as the atomi c number increases.
Graphite is an allotrope, (different forms of the same element in th e same state) of carbon. Graphite's structure means it has differen t properties from diamond. Weak bonds between the layers in grap hite are easily broken so layers can slide over each other; delocalis ed electrons are free to move along the layers carrying an electric current around; layers held together by weak Van der Waals forces ; graphite is less dense because the layers are far apart; because o f the strong covalent bonds, graphite has a high melting point and i t is insoluble in any solvent.	A covalent bond is the sharing of electrons between two atoms this happens when two atoms approaches each other and their electron clouds overlap and electron density is greatest between the nuclei. *Covalent bonds can be sigma bonds. An overlap of s-orbitals givin g the highest possible electron density or covalent bonds can be pi bonds, and overlap of 2 electrons in the p orbitals. Pi bonds are we aker than sigma bonds and are more reactive.

i....

AS Chemistry Unit 1 CramStudy this set online at: <u>http://www.c</u>	ram.com/flashcards/as-chemistry-unit-1-20123
Metallic bonding:	Chain Isomers:
Periodic trends:	Positional isomers:
Homologus series:	Functional group isomers:
Alkanes and Alkenes	Alkanes:

AS Chemistry Unit 1	
Chain isomers have a different arrangement of the carbon skeleton , some are straight and some are branched.	A metal is made up of an array of cations and delocalised electrons . The electrostatic force between the oppositely charged particles is the metallic bond. The more delocalised electrons the stronger the bond so the higher the melting point, no bonds holding specific ions together so metals are malleable and ductile, delocalised electrons can carry a current and metals are insoluble, except in liquid metal s.
Positional isomers have the same skeleton and same functional gro up, the difference is that the group is attached to a different carbon atom.	Atomic radius decreases across a period, as the protons increase, t he positive charge of the nucleus increases meaning the electrons are pulled closer to the nucleus, making the atomic radius smaller, electro negativity increases across a period, ionisation energies gen erally increase across a period. There is a drop of 1st ionisation en ergies betweens groups 2 and 3 because group 2's outer shell is in the 2s orbital but group 3's outer shell is in the 2p orbital and 2p ha s a slightly higher energy than the 2s. Drop of 1st ionisation energi es betweens groups 5 and 6, the outer electrons for both elements come are in the same sub-shell so do not differ in shielding or atom ic radius but electron repulsion between the 2 electrons in the outer shells make it easier to remove electrons. Melting and boiling points for metals increase across the period; this is because metallic bond s get stronger because the number of delocalised electrons increas e, decreasing ionic radius leading to higher change density which at
Functional group isomers have the same atoms arranged into differ ent functional groups.	A group of compounds can be represented by the same general for mula is the homologus series. The general formula can be used to work out the molecular formula. Each successive members of a ho mologus series differs by a CH2 group.
Alkanes are saturated hydrocarbons; every carbon has 4 single bon ds with other atoms. It is impossible for the carbon to make more t han 4 bonds. *Alkanes have a tetrahedral shape around each carbo n with a bond angle of 109.5. *Alkane's burn completely in oxygen, if you burn oxygen and alkanes, carbon dioxide and water is produ ced. This is a combustion reaction and is exothermic. Combustion h appens in gases so liquid alkanes would be vaporised into gases fir st.	Alkanes = CnH2n+2. Alkenes = CnH2n and Alcohols = CnH2n+1O H •Meth is 1 carbon •Eth is 2 carbons •Prop is 3 carbons, •But is 4 ca rbons •Pent is 5 carbons •Hex is 6 carbons •Hept is 7 carbons •Oct is 8 carbons •Non is 9 carbons •Dec is 10 carbons.

AS Chemistry Unit 1 CramStudy this set online at: <u>http://www.c</u>	ram.com/flashcards/as-chemistry-unit-1-20123
Fractional distillation:	Heterolytic fission:
Cracked:	Homolytic fission:
Thermal cracking:	Free radical substitution reaction:
Reforming:	Alkenes:

AS Chemistry Unit 1	
In heterolytic fission two different substances are formed – positive charged cat ions and negatively charged an ions.	Crude oil is vaporised at 350 degrees Celsius. The largest hydrocar bons won't vaporise as their boiling points are too high. As the crud e oil vapour goes up the fractioning column it gets cooler and beca use of the different chain lengths, each fraction condenses at differ ent temperatures. Fuel, wax, grease and are at the bottom and pet rol and gases at the top.
Homolytic fission is the formation of 2 free radicals. Free radicals ar e particles that have an unpaired electron making them very reacti ve.	Heaving fractions from the column are cracked to make them small er. Cracking involves breaking ling chains into smaller hydrocarbons by breaking the C-C bonds.
Halogens react with alkanes in photochemical reactions, which are started by UV lights. A hydrogen atom is substituted by Cl2 or Br2. *Free radical substitution reaction mechanism has three stages: •Ini tiation reaction: Free radicals are produced under UV light, this is h omolytic fission. •Propagation reaction: In propagation free radicals are used up and produce one free radical and a molecule. •Termina tion reaction: Two free radicals join together to make a stable molec ule.	Thermal cracking takes place at high temperatures (1000 degrees) and at high pressures or 70atmospheres. It produces a lot of alkan es which is used to make heaps of valuable products such as polym ers. E.g.: Poly (ethene) which is made from ethene.
Alkenes are unsaturated hydrocarbons. Alkenes have at least one C double bond C bond. They can make extra bonds with atoms in a ddition reactions. *Alkenes are oxidised by acidified potassium man ganate 7. *Alkenes are more reactive than alkanes because there a re two pairs of electrons in the C double bond C bond, meaning it h as a really high electron density.	Converting alkenes into arenes is called reforming and uses a catal yst such as platinum on aluminium oxide.

AS Chemistry Unit 1 CramStudy this set online at: <u>http://www.cr</u>	ram.com/flashcards/as-chemistry-unit-1-20123
Electrophilic addition reactions:	Stereoisomerism:
Electrophiles	E isomers:
Test for Alkenes	Z isomers:
E Z isomerism:	Cis:

AS Chemistry Unit 1		
Stereoisomerism has the same structural formula but different arra ngements, because of lack of rotation around the double bond, alk enes can have stereoisomerism. Alkanes DO NOT!! *If two double b onded carbon atoms have different atoms or groups attached to th em, you get an E or Z isomer.	An electrophilic addition reaction happens to alkenes. In Electrophili c addition the double bond opens up and the other atoms are attach ed to each of its carbons. The double bonds have plenty of electron s that are attacked by an electrophile. The double bond is also nucl eophilic, it's attracted to places without enough electrons.	
E isomers are the same group or atom across the double bond.	Electrophiles are electron pair acceptors. They are positively charg ed ions such as H+.	
Z isomers are the same group on the same side of the double bond	Bromine reacts with alkenes by electrophilic addition. Bromine wate r which is orange when it reacts with alkenes it decolourises. Also a test for C double bond C bonds.	
Cis is the same as Z. The groups are on the same side of the doubl e bond.	E Z isomerism is a form of stereoisomerism.	

AS Chemistry Unit 1 CramStudy this set online at: <u>http://www.cram.com/flashcards/as-chemistry-unit-1-20123</u>		
Polymers can be used in Teflon pans, plastic windows, plastic crates , bags, bottles etc. however it is very un-reactive which makes it h ard to dispose of. They are non bio-degradable.	Trans is the same as E. The groups are on opposite sides of the c d ouble bond c bond. *If all four of the groups are different, then you base the E Z on the highest priority. If the higher priority is on the s ame side it is a Z, if it is on opposite sides it's an E isomer.	
When a chemical reaction occurs some bonds are broken and some are made by changing the energy. *Enthalpy change (delta H) is the heat energy transferred in a reaction at a constant pressure. The u nits of enthalpy change are kJ mol minus 1.	Polymers are double bonds in alkenes can open up and join togethe r to make long chains.	
Exothermic reactions give energy out. The enthalpy change is nega tive.	Small individual alkenes are monomers.	
Endothermic reactions energy is absorbed from the surroundings. T he enthalpy change is positive.	Addition polymerisation is an alkene monomer becoming a polymer. For example poly (ethene) is made by the addition polymerisation o f ethene.	

AS Chemistry Unit 1 CramStudy this set online at: <u>http://www.cram.com/flashcards/as-chemistry-unit-1-20123</u>	
Standard enthalpy change of reaction, delta H r:	Standard enthalpy change of atomisation, delta H at:
Standard enthalpy change of formation, delta H f:	Standard Conditions
Standard enthalpy change of combustion, delta H c:	Hess' Law:
Standard enthalpy change of neutralisation, delta H neut:	

AS Chemistry Unit 1		
Is the enthalpy change when 1 mole of gaseous atoms is formed fr om the element in its standard state.	Is the enthalpy change when the reaction occurs in the molar quanti ties shown in the chemical equation, under standard conditions in th eir standard state.	
Standard conditions are at 1 atmosphere pressure and 25 degrees temperature	: Is the enthalpy change when 1 mole of a compound is formed fro m its elements in their standard state, under standard conditions. E. g. Carbon (gas) + Oxygen (gas) = Carbon dioxide (gas)	
Hess' law is that the total enthalpy change of a reaction is always t he same, no matter which route is taken.	Is the enthalpy change when 1 mole of a substance is completely b urned in oxygen under standard conditions.	
	Is the enthalpy change when 1 mole of water is formed the neutrali sation of hydrogen ions and hydroxide ions under standard conditio ns.	