Created by T. Madas

Question 1

The following convergent series C and S are given by

$$
\begin{aligned}
& C=1+\frac{1}{2} \cos \theta+\frac{1}{4} \cos 2 \theta+\frac{1}{8} \cos 3 \theta \ldots \\
& S=\frac{1}{2} \sin \theta+\frac{1}{4} \sin 2 \theta+\frac{1}{8} \sin 3 \theta \ldots
\end{aligned}
$$

a) Show clearly that

$$
C+\mathrm{i} S=\frac{2}{2-\mathrm{e}^{\mathrm{i} \theta}} .
$$

b) Hence show further that

$$
C=\frac{4-2 \cos \theta}{5-4 \cos \theta}
$$

and find a similar expression for S.

$$
S=\frac{2 \sin \theta}{5-4 \cos \theta}
$$

Created by T. Madas

Question 2

The following finite sums, C and S, are given by

$$
\begin{aligned}
& C=1+5 \cos 2 \theta+10 \cos 4 \theta+10 \cos 6 \theta+5 \cos 8 \theta+\cos 10 \theta \\
& S=5 \sin 2 \theta+10 \sin 4 \theta+10 \sin 6 \theta+5 \sin 8 \theta+\sin 10 \theta
\end{aligned}
$$

By considering the binomial expansion of $(1+A)^{5}$, show clearly that

$$
C=32 \cos ^{5} \theta \cos 5 \theta
$$

and find a similar expression for S
$S=32 \cos ^{5} \theta \sin 5 \theta$
$c=1+5 \cos 2 \theta+10 \cos 4 \theta+10 \cos 6 \theta+5 \cos 8 \theta+\cos 10 \theta$ $s=5 \sin 2 \theta+10 \sin 4 \theta+10 \sin 6 \theta+5 \sin 8 \theta+\sin 10 \theta$ This
$c+i s=1+5 e^{i \theta \theta}+10 e^{i 4 \theta}+10 e^{i 6 \theta}+5 e^{i 8 \theta}+e^{10 \theta}$ whtat is The Binomita expronsia)
$\left(1+e^{2 i \theta}\right)^{5}$
$(1+\cos 2 \theta+i \sin 2 \theta)^{5}$
$=\left(1+2 \cos ^{3} \theta+1+2 i \sin \theta \cos \theta\right)^{5}$
$\left(2 \cos ^{2} \theta+i 2 \sin \theta \cos \theta\right)^{5}$
$[2 \cos \theta(\cos \theta+i \sin \theta)]^{5}$
$=32 \cos ^{5} \theta(\cos \theta+i \sin \theta)^{5}$
$=32 \cos ^{5} \theta(\cos 5 \theta+i \sin 5 \theta)$
$=\left(32 \cos ^{5} \theta \cos 5 \theta\right)+\left(32 \cos ^{5} \theta \sin 5 \theta\right)$

- $c=32 \cos ^{5} \theta \cos 5 \theta$
$\$=32 \cos ^{5} \theta \cos s \theta$

