The required area is the part with the blue squiggle in it
Split this area into an arc sector and a triangle
First find d :

$$
c^{2}+d^{2}=1 \rightarrow d=\left(1-c^{2}\right)^{1 / 2}
$$

The area of the triangle (half base times height) is

$$
1 / 2 c d=1 / 2 c\left(1-c^{2}\right)^{1 / 2}
$$

The area of the arc sector is $1 / 2 r^{2} \theta$
Where θ is the angle subtended by that arc.
The red line is a radius, so it has length 1 , and the line joining (c, d)

And the y-axis has length c.
Arc: $1 / 2 \times 1^{2} \arcsin (c / 1)$
Adding these gives what they want
For the next part, we want the corresponding area for an ellipse.
Just integrate:

$$
\begin{aligned}
& A=\int_{0}^{c} b\left(1-\frac{x^{2}}{a^{2}}\right)^{1 / 2} d x \\
& =\int_{0}^{c} \frac{b}{a}\left(a^{2}-x^{2}\right)^{1 / 2} d x
\end{aligned}
$$

Use $x=a \sin t \rightarrow$ New limits: $\arcsin 0$ and $\arcsin (c / a)$ (call this value C to save writing)

$$
\begin{gathered}
d x=a \cos t d t \\
A=\frac{b}{a} \int_{0}^{C} a^{2} \cos ^{2} t d t=a b \int_{0}^{C} 1 / 2(1+\cos 2 \mathrm{t}) d t \\
=\frac{a b}{2}[t+1 / 2 \sin 2 \mathrm{t}]_{0}^{C}=\frac{a b}{2}(C+\sin C \cos C) \\
\sin C=c / a \text { and } \cos C=\left(1-\sin ^{2} C\right)^{1 / 2}=\left(1-c^{2} / a^{2}\right)^{1 / 2} \\
A=\frac{a b}{2}\left(\arcsin \left(\frac{c}{a}\right)+\frac{c}{a}\left(1-c^{2} / a^{2}\right)^{1 / 2}\right)
\end{gathered}
$$

We need the area between two ellipses. $a>b$ means the second one is taller than it is wide. Integrating the first one from 0 to c , then the second one from c to b gives the required area. c is the x co-ordinate of the intersection. So we need the area under the blue line up till the black line, and then the area under the red line.
Finding c: $\frac{c^{2}}{a^{2}}+\frac{d^{2}}{b^{2}}=1$ and $\frac{c^{2}}{b^{2}}+\frac{d^{2}}{a^{2}}=1 \quad$ Multiplying the first by $a^{2} b^{4}$ and the second by $a^{4} b^{2}$:

$$
b^{4} c^{2}+a^{2} b^{2} d^{2}=a^{2} b^{4} \text { and } a^{4} c^{2}+a^{2} b^{2} d^{2}=a^{4} b^{2}
$$

Subtracting: $\left(a^{4}-b^{4}\right) c^{2}=a^{2} b^{2}\left(a^{2}-b^{2}\right) \rightarrow c^{2}=\frac{a^{2} b^{2}}{\left(a^{2}+b^{2}\right)} \quad$ (difference of squares on LHS)
We already have the area under the blue: $\frac{a b}{2}\left(\arcsin \left(\frac{c}{a}\right)+\left(\frac{c}{a}\right)\left(1-c^{2} / a^{2}\right)^{1 / 2}\right)$

$$
=\frac{a b}{2}\left(\arcsin \left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)+\frac{a b}{a^{2}+b^{2}}\right)^{*}
$$

The area under the red is found by integration, but it works out largely the same, except a and b are switched, and the limits are different:
$\left(\frac{a b}{2}\right)[t+\sin t \cos t]_{\arcsin (c / b)}^{\arcsin (b / b)}=\left(\frac{a b}{2}\right)\left(\pi / 2-\arcsin (c / b)-\frac{c}{b}\left(1-\frac{c^{2}}{b^{2}}\right)^{1 / 2}\right)=\left(\frac{a b}{2}\right)\left(\pi / 2-\arcsin \left(\frac{a}{\sqrt{\left(a^{2}+b^{2}\right)}}\right)-\frac{a}{\sqrt{\left(a^{2}+b^{2}\right)}}\left(1-\frac{a^{2}}{a^{2}+b^{2}}\right)^{1 / 2}\right)$

$$
=\left(\frac{a b}{2}\right)\left(\pi / 2-\arcsin \left(\frac{a}{\sqrt{\left(a^{2}+b^{2}\right)}}\right)-\frac{a b}{a^{2}+b^{2}}\right) \text { after a bit of algebra. }
$$

considering the triangle on the right shows that $\pi / 2-\arcsin \left(\frac{a}{\sqrt{\left(a^{2}+b^{2}\right)}}\right)=\arcsin \left(\frac{b}{\sqrt{\left(a^{2}+b^{2}\right)}}\right)$

So this area is: $\frac{a b}{2}\left(\arcsin \left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)-\frac{a b}{a^{2}+b^{2}}\right)$
Adding it to the other area $\left(^{*}\right)$ and multiplying by 4 , since it happens in all four quadrants, gives the required answer.

