The required area is the part with the blue squiggle in it
Split this area into an arc sector and a triangle
First find d :

ct+d’=1 - d=(1-¢)"

The area of the triangle (half base times height) is
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The area of the arc sector is ¥ 7°0
Where 0 is the angle subtended by that arc.

The red line is a radius, so it has length 1, and the line joining (¢, d)
And the y-axis has lengthc.

Arc: %X 1 arcsin (¢/1)

Adding these gives what they want

For the next part, we want the corresponding area for an ellipse.
Just integrate:
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Use x=asint — New limits:arcsin0 and arcsin(c/ a) (call this value C to save writing)
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We need the area between two ellipses. a>b means the second one is taller than it is wide. .
Integrating the first one from 0 to c, then the second one from c to b gives the required area. \
c is the x co-ordinate of the intersection. So we need the area under the blue line up till the black line,

and then the area under the red line.
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Finding c: §+ %= 1 and ;+ ?= 1 Multiplying the first by a’b* and the second bya4b2 :

b'+a’b’d’=a’b" and a'F+d’b’d’=a'b’
242
Subtracting: (a*—b*)c’=a’b’(a’=b°) — c2=% (difference of squares on LHS)
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We already have the area under the blue: az—b(arcsin(%)ﬂg) (1-c*1d)")
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The area under the red is found by integration, but it works out largely the same,
except a and b are switched, and the limits are different:
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considering the triangle on the right shows that 1t/ 2—arcsm(L)=arcsm (—)
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Adding it to the other area (*) and multiplying by 4, since it happens in all four quadrants, gives the required answer.

So this area is: % (arcsin (



