Extension Exercise

Numerical answers should be calculated without a calculator. A calculator may, however, be used for checking purposes.

- Find the first three terms in the expansion, in ascending powers of x, of $(1-x)^4$.
 - **b** Repeat part **a** for $(1+3x)^5$.
 - **c** Hence find the coefficient of x^2 in the expansion of $(1-x)^4(1+3x)^5$.
- 2 Expand

a
$$(2+x+x^2)^3$$

b
$$(3+x-2x^2)^3$$
 c $(1-x+x^2)^4$

c
$$(1-x+x^2)^2$$

3 Expand as far as the term in x^2

a
$$(1-x-x^2)^4$$

b
$$(1+2x+3x^2)^5$$
 c $(2+x-x^2)^6$

c
$$(2 + x - x^2)^6$$

4 Use a binomial expansion to simplify these.

a
$$(\sqrt{3} + \sqrt{2})^5 + (\sqrt{3} - \sqrt{2})^5$$

b
$$(2\sqrt{2}+1)^4-(2\sqrt{2}-1)^4$$

- **5 a** Expand $(1 + 2x)^3$.
 - **b** Hence, find the term in x^2 in the expansion of $(2 x + x^2)(1 + 2x)^3$.
- **6** Use a binomial expansion to evaluate 1.01¹⁰, correct to 5 significant figures.
- 7 a Find the first three terms in the expansions, in ascending powers of x, of i $(1+3x)^6$ ii $(1-x)^6$
 - **b** Hence find the coefficient of x^2 in the expansion of $(1 + 2x 3x^2)^6$.
- **8** Expand $(x+2)^5$ and $(x-2)^4$. Obtain the coefficient of x^7 in the product of the expansions.
- **9 a** Find the first four terms of the expansion of $(1-x)^5$.
 - **b** By expressing $(1 x + 2x^2)^5$ as $(1 (x 2x^2))^5$, find, as far as the term in x^3 , the expansion of $(1 - x + 2x^2)^5$.
- **10 a** Find the middle term of the expansion of $(2x+3)^8$ and the value of this term when $x = \frac{1}{12}$.
 - Find the constant term in the expansion of $\left(x^2 + \frac{2}{x}\right)^9$
- 11 Find the first four terms in the expansion of $(1 x + 2x^2)^5$ in ascending powers of x.
- **12 a** Use the expansion of $(1+x)^n$ to show that, for $n \in \mathbb{Z}^+$

$$\mathbf{i} \quad \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n} = 2^n$$

ii
$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \dots + \binom{n}{n} = 0$$

b Interpret the results in part **a** in the context of Pascal's triangle.

13 a Prove that

$$\mathbf{i} \, \binom{n+1}{r} = \binom{n}{r} + \binom{n}{r-1} \qquad \mathbf{ii} \, \binom{n+2}{3} - \binom{n}{3} = n^2$$

ii
$$\binom{n+2}{3} - \binom{n}{3} = n^2$$

- **b** Interpret the results in part **a** in the context of Pascal's triangle.
- **14** Prove, from first principles, that, for $n \in \mathbb{Z}^+$

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$$