Question		Answer	Marks			
$\mathbf{1}$	s^{-1}	$;$	m^{-1}	$; \quad \mathrm{m}^{-3}$	3	not equivalent units not listed e.g. Hz $/ \mathrm{D}$

Question	Answer	Marks	Guidance
2(a)	waveform is periodic / (main peaks) repeats itself regularly ;	$\mathbf{1}$	idea of time required not constant wavelength or reference to length not just reference to repeated main peaks
(b)	but more complex than pure sine wave / has harmonics / higher frequency (oscillations) / other (smaller) oscillations / smaller peaks (between large ones)	$\mathbf{1}$	not smaller frequencies / noise

Question	Answer	Marks	Guidance
3(a) (b)	$\begin{aligned} & 12 \text { k(Hz) } \\ & 9 \text { (bits) } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$12000(\mathrm{~Hz})$ ignore $2^{9}=512$ if answer not stated not 8.6 (bits)
(c)	bandwidth \approx bit rate $/ \approx$ bit rate $/ 2$ bit rate $=$ sampling frequency x bits per sample	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	not reference to (highest f - lowest f) allow 1 mark for evaluation $108 \mathrm{k} / 108 / 2=54 \mathrm{k}$ allow 2 marks for evaluation with bandwidth units Hz accept ecf on (a) x (b) accept bandwidth = sampling frequency x bits per sample for 2 marks
	Total	4	

Question	Answer					Marks
4(a)(b)(c)	10^{3}	$;$	10^{-6}	$; 10^{-6}$		Guidance

Question	Answer	Marks	Guidance	
$\mathbf{5}$ (a)	$n=/ / e \quad /=8 \times 10^{-12} / 1.6 \times 10^{-19} ;$	$\mathbf{1}$	method: words / numbers / algebra ;	
	5×10^{7}	Total	$\mathbf{2}$	
		evaluation one POT error can score 1, two POT errors score 0		

Question	Answer	Marks	Guidance
6(a)	$V^{2} / R \quad / \quad 12^{2} / 4.7$	1	method: words / numbers / algebra accept $/=2.6 \mathrm{~A}$ for $1^{\text {st }}$ mark alternative method
	30.6 / 31 (W) / $31.8(\mathrm{~W})$ or 31.2 (W) premature rounding	1	evaluation accept $P=I \mathrm{~V}$ correctly evaluated for $2^{\text {nd }}$ mark
(b)	method $L=R A / \rho / 4.7 \times 1.8 \times 10^{-8} /\left(4.5 \times 10^{-7}\right)$;	1	method: words / numbers / algebra
	$=0.188 \quad /=0.19$ (m)	1	evaluation accept $0.2(\mathrm{~m})$ no S.F. penalty here not $0.20 / 0.18$ (m) R.E.
	Total	4	

Question	Answer	Marks	Guidance
7(a)	f further from lens ; λ similar use marking tool all wavelengths should be between the length of the red (min) and green (max)	2	ignore curvature if correct sign / waves to right of focus / position of first wavefront expect wavefronts to F
(b)	smaller because lens adds less curvature to the wavefronts because light is not slowed so much / because light is not refracted so much	1	accept smaller because f larger / because $P=1 / f$ ignore response to (a) standalone mark ignore bent less Scroll down this image to check that page 6 of the paper has no candidate response to be credited. Use BP annotation on every blank page. Responses must be annotated / marked and credited to relevant question total. If no credit due use ${ }^{\wedge}$ annotation to show work seen.
	Total Total Section A	$\begin{gathered} 3 \\ 22 \end{gathered}$	

Question	Answer	Marks	Guidance
$8 \quad$ (a) (i)	R and LDR correct symbols in complete series circuit	1	either way round ignore labelling / Voltmeter if drawn accept for LDR (with /without) circle and 2 arrows / variable resistor / general transducer symbol for LDR (thermistor) not LED or lamp or fuse or photodiode or other symbols
(a) (ii)	resistance ratio changes / voltage is shared (between resistors) ; correct direction of change in resistance ratio ($R_{f} / R_{\text {LDR }}$ increases or v.v.) ; Link resistance to p.d. by : use of potential divider equation or voltage ratio $=$ resistance ratio OR as light intensity rises $R_{\text {LDR }}$ falls so $\mathrm{R}_{\text {total }}$ falls ; current increases ; p.d. across $R_{\text {FIXED }}$ rises / p.d. across LDR falls	1 1 1	applying the potential divider or voltage ratio equation with correct sense can score all 3 marks expect candidates to make clear which R they are talking about accept voltage is shared in proportion to the resistances not current is constant (in series circuit) QoWC $3^{\text {rd }}$ mark only if steps in reasoning are clear and no logical errors
(b) (i)	change in output / change in input $/$ Δ dependent / Δ independent $\Delta \mathrm{y} / \Delta \mathrm{x} / \quad \Delta V_{\text {out }} / \Delta$ intensity	1	ignore \pm signs accept gradient of graph not resolution / how sensitivity changes with intensity not voltage change for a set/given lux change (don't read for as per)

Question	Answer	Marks	Guidance
(ii)	$\begin{aligned} & \text { sensible tangent / triangle } \\ & \text { e.g. } \quad(5-2.5 \mathrm{~V}) /(1900 \text { lux }) ; \\ & \{1.2 \pm 0.2\} \times 10^{-3}\left(\mathrm{~V} \text { lux }{ }^{-1}\right) \end{aligned}$	1 1 1	method from graph with $\Delta l u x \geq 400$ lux. If slux <400 max 2 out of 3 for in range answer chord method approximation from graph if in range max 1 mark not any credit 3.8 / 1000 (graph values) for last 2 marks accept sensible values from graph evaluation accept in range 1.0×10^{-3} to $1.4 \times 10^{-3}\left(\mathrm{~V} \mathrm{lux}^{-1}\right)$ correct bare answer scores 3
(iii)	$\left(V_{\text {FIXED }}\right)=3.8 \mathrm{~V}$ EITHER $\begin{aligned} & I=3.8 / 800=4.75 \mathrm{~mA} / 4.8 \mathrm{~mA} ; \\ & V_{\mathrm{LDR}}=6.0-3.8=2.2 \mathrm{~V} ; \\ & R_{\mathrm{LDR}}=2.2 / 0.00475=460 \Omega / 4.6(3) \times 10^{2} \Omega \end{aligned}$ OR potential divider equation or voltage ratio equation rearranged for R_{LDR}; equation correctly substituted evaluation $\quad R_{\mathrm{LDR}}=(4800-3040) / 3.8=460 \Omega$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	read from graph accept $V=3.8(\mathrm{~V})$ standalone credit allow small graph reading errors $\pm 0.1 \mathrm{~V}$ correctly worked through (in range 430 to 500Ω) for the next 3 marks. Gross reading errors score 0 total. accept substitution / rearrangement in either order $\text { e.g. } \quad 3.8=6.0 \times 800 /\left(800+R_{\text {LDR }}\right)$ 1380Ω scores 2 out of 4 bare correct answer 460Ω scores 4 marks
	Total	12	

Question	Answer	Marks	Guidance
9 (a) (i)	$\begin{aligned} & \text { image area } \approx 10^{-18} \mathrm{~m}^{2} / 60 \times 10^{18} \text { atoms } \mathrm{m}^{-2} \\ & \text { mass per } \mathrm{m}^{2}=2 \times 10^{-26}(\mathrm{~kg}) \times 60 \times 10^{18}\left(\text { atoms } \mathrm{m}^{-2}\right) \\ & =1.2 \times 10^{-6}(\mathrm{~kg}) \end{aligned}$	1 1 1	accept mass of 60 atoms $=1.2 \times 10^{-24} \mathrm{~kg}$ alt first mark accept number of atoms between 55 to 65 for those who have tried to count not any further credit if area $=10^{-9} \mathrm{~m}^{2}$ max 1 out of 3 expect $2 \mathrm{~S} . \mathrm{F}$. for show that in range (1.1 to 1.3) $\times 10^{-6}(\mathrm{~kg})$
(a) (ii)	$\left(\rho=1.2 \times 10^{-6} /\left(1 \times 1 \times 0.34 \times 10^{-9}\right)\right)=3500 \mathrm{~kg} \mathrm{~m}^{-3}$	1	accept $3529 \mathrm{~kg} \mathrm{~m}^{-3} / 29(41) \mathrm{kg} \mathrm{m}^{-3}$ from show that accept ecf in range 3800 to $3200 \mathrm{~kg} \mathrm{~m}^{-3}$
(a) (iii)	$F=\left(\sigma_{\mathrm{B}} \times A\right) \approx 4 \times 10^{10}(\mathrm{~Pa}) \times\left(0.1 \times 0.34 \times 10^{-9}\left(\mathrm{~m}^{2}\right)\right)$ $1.4(\mathrm{~N})$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method expect correct substitution of values evaluation expect 2 S.F. for show that accept $1.36(\mathrm{~N})$ ORA 1 N of force gives stress $=2.9 \times 10^{10} \mathrm{~Pa} ;<4 \times 10^{10} \mathrm{~Pa}$
(b)	$\begin{aligned} & \sigma=I L /(V A) \quad \text { OR } \quad \sigma=G L / A \text { and } G=I / V ; \\ & =6.7 \times 10^{-15} \times 0.34 \times 10^{-9} /\left(0.15 \times 10^{-3}\right) \times\left\{200 \times 10^{-9}\right\}^{2} \\ & =3.8 \times 10^{-7}\left(\mathrm{Sm}^{-1}\right) \end{aligned}$	1 1 1	method accept $G=/ / V=4.4(7) \times 10^{-11} \mathrm{~S} /$ $R=2.2(4) \times 10^{10} \Omega$ for first mark accept inverse substitution for ρ substitution penalise each POT error by a mark lost evaluation

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Marks \& Guidance \\
\hline (c) \& \begin{tabular}{l}
(i) mechanical e.g. cycle frames / car bodies / space elevator cable / carrier bags / space craft / aircraft / bridge cables / other built structures / protective clothing / bullet proof vests / graphene reinforcing a plastic composite etc. ; \\
(ii) electrical e.g. solar cells / transistors / circuits / LEDs / doped layers to make gates / touch screen / sensors / electrical cables / connectors / switches / insulators (in semiconducting orientation) etc. ; \\
high strength / low density / high stiffness (directional) specified conductivity (high / metallic / semiconducting / both / high charge carrier density) \\
e.g. touch screen conducting layers separated by insulators, which contact under pressure / electrical cables useful to minimise heat losses / weight / size \\
car bodies strong for protection against impact / light weight for fuel saving / strong and lightweight \\
carrier bags stiffness anisotropy stiff to bear load and flexible to wrap around items
\end{tabular} \& 1

1
1

1 \& | First two marks awarded for two plausible applications. not pencils / lubricants / heat conduction / just cars / just cycles / just buildings / just clothing |
| :--- |
| one application repeated only scores 1 mark even if both properties relevant |
| Third mark awarded for a correctly stated property related to each application |
| QoWC further detail or development of link between one property and application or two relevant properties applied to one application for $4^{\text {th }}$ mark e.g. car bodies strong and low density / lightweight |
| OR circuits using two orientations of graphene deposit to use metallic conduction for connectivity and semiconduction for constructing components / due to electrical anisotropy | \\

\hline \& Total \& 13 \& \\
\hline
\end{tabular}

Question	Answer	Marks	Guidance
10 (a)	contain more information / less error prone ; contain information in 2-d (rather than 1-d) / more combinations / more alternative / more possibilities / more patterns / better resolution required to measure bar width	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept more data / bits / details / other plausible suggestions not data security accept in pixel form rather than "smeared" linear array / squares take less area than bars / AW not more variations
(b) (i)	$\left(33^{2} / 8\right)=136$ (bytes)	1	accept 136.125 (bytes) not $137 / 140$ (bytes)
(b) (ii)	$2^{8} / 256$	1	
(b) (iii)	to help with recognising the alignment / orientation of the code so that bits are considered in correct order for reading by software	1	accept to recognise as QR code / detect edges / boundaries / corners of code / locate the data / to aid focus by scanner not parity bits
(c) (i)	```size of image \(=M \times\) size object \(/ \approx 5 / 100 \times 33 \mathrm{~mm}\) \(=1.7 \mathrm{~mm} \quad(<2.0 \mathrm{~mm})\) OR check that 2/33>5/100; comparing magnifications OR compare angles subtended at lens; \(33 / 100<2 / 5\)```	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	```allow magnification = 0.05 for 1 mark accept 1.65 mm allow correct answer from M = 20 allow 1 out of 2 marks i.e. check actual M < 2/33 accept comparing triangles not any credit for correct v=5.3 mm here (lens formula)```
(c) (ii)	$\begin{aligned} & 1 / v=1 /(-0.1)+1 /(0.005) /=-10+200=190 \mathrm{D} \\ & \therefore v=1 / 190=5.26 \times 10^{-3} \mathrm{~m} / 5.3 \mathrm{~mm} \\ & f \times 1.05=5 \times 1.05=5.25 \mathrm{~mm} \\ & (5.26-5.0) / 5.0=0.052(5.2 \%) \end{aligned}$	1 1 1	method evaluation accept 5.26 mm not $5 \mathrm{~mm} / 0.005 \mathrm{~m}$ SF penalty allow 1 mark (from first 2) for sign error ($u=+0.1$) giving 210 D and $v=4.8 \mathrm{~mm}$ calculation of $105 \% \times f$ allow as standalone mark only allow credit for working in $\mathrm{c}(\mathrm{i})$ if referenced here accept 5.3\% not any credit for $u v$ transposition leading to -5.3 mm and 5%

Question	Answer	Marks	Guidance
(c) (iii)	image of several QR modules can cover 1 camera pixel details of code not resolved there will only be 1 pixel per module at limit of resolution EITHER $\begin{aligned} & (M=v / u=\text { pixel size } / \text { module size }) \quad 5 / u=0.002 / 1 \quad \text { in } \mathrm{mm} \\ & u=(1 / 0.002) \times 5=2500 \mathrm{~mm} \quad / \quad 2.5 \mathrm{~m} \end{aligned}$ OR module image size $=1 / 500 \times 1 \mathrm{~mm} / 2 \times 10^{-6} \mathrm{~m}$; pixel size $=2 \mathrm{~mm} / 1000 / 2 \times 10^{-6} \mathrm{~m}$	1	credit a sensible further problem explicitly stated e.g. resolution accept resolution too high / too low not just information lost / averaged accept calculations for other u values near to 2.5 m if supported by sensible reasoning Scroll down this image to check that page16 of the paper has no candidate response to be credited. Use BP annotation on every blank page. Responses must be annotated / marked and credited to relevant question total. If no credit due use ${ }^{\wedge}$ annotation to show attempt seen.
	Total Section B Total for paper	$\begin{aligned} & 13 \\ & 38 \\ & 60 \end{aligned}$	

