G491

Question	Answer	Marks	Guidance
1	s ⁻¹ ; m ⁻¹ ; m ⁻³	3	not equivalent units not listed e.g. Hz / D
	Total	3	

Question	Answer	Marks	Guidance
2(a)	waveform is periodic / (main peaks) repeats itself regularly ;	1	idea of time required not constant wavelength or reference to length not just reference to repeated main peaks
	but more complex than pure sine wave / has harmonics / higher frequency (oscillations) / other (smaller) oscillations / smaller peaks (between large ones)	1	not smaller frequencies / noise
(b)	evaluation $(11 \times 1000 / 40) = 275 \approx 280 (Hz)$	1	(11 waves in 40 ms / 3.6 ms / wave) accept answers in range 270 to 280 Hz
	Total	3	

Question	Answer	Marks	Guidance
3(a)	12 k(Hz)	1	12 000 (Hz)
(b)	9 (bits)	1	ignore $2^9 = 512$ if answer not stated not 8.6 (bits)
(c)	bandwidth ≈ bit rate / ≈ bit rate /2 bit rate = sampling frequency x bits per sample	1 1	<pre>not reference to (highest f – lowest f) allow 1 mark for evaluation 108 k / 108/2 = 54 k allow 2 marks for evaluation with bandwidth units Hz accept ecf on (a) x (b) accept bandwidth = sampling frequency x bits per sample for 2 marks</pre>
	Total	4	

Question	Answer	Marks	Guidance
4(a)(b)(c)	10^3 ; 10^{-6} ; 10^{-6}	3	
	Total	3	

Question	Answer	Marks	Guidance
5 (a)	n = I/e / = 8 x 10 ⁻¹² / 1.6 x 10 ⁻¹⁹ ;	1	method: words / numbers / algebra ;
	5 x 10 ⁷	1	evaluation one POT error can score 1, two POT errors score 0
	Total	2	

Question	Answer	Marks	Guidance
6(a)	$V^2 / R / 12^2 / 4.7$;	1	method: words / numbers / algebra accept / = 2.6 A for 1 st mark alternative method
	30.6 / 31 (W) / 31.8 (W) or 31.2 (W) premature rounding	1	evaluation accept $P = IV$ correctly evaluated for 2^{nd} mark
(b)	method $L = RA / \rho$ / 4.7 x 1.8 x 10 ⁻⁸ / (4.5 x 10 ⁻⁷);	1	method: words / numbers / algebra
	= 0.188 / = 0.19 (m)	1	evaluation accept 0.2 (m) no S.F. penalty here not 0.20 / 0.18 (m) R.E.
	Total	4	

Question	Answer	Marks	Guidance
7(a)	f further from lens ; λ similar use marking tool all wavelengths should be between the length of the red (min) and green (max)	2	ignore curvature if correct sign / waves to right of focus / position of first wavefront expect wavefronts to F
(b)	<u>smaller</u> because lens adds less curvature to the wavefronts / because light is not slowed so much / because light is not refracted so much	1	 accept smaller because f larger / because P = 1 / f ignore response to (a) standalone mark ignore bent less Scroll down this image to check that page 6 of the paper has no candidate response to be credited. Use BP annotation on every blank page. Responses must be annotated / marked and credited to relevant question total. If no credit due use ^ annotation to show work seen.
	Total	3	
	Total Section A	22	

Ques	stion		Answer	Marks	Guidance
8	(a)	(i)	<i>R</i> and LDR correct symbols in complete series circuit	1	either way round ignore labelling / Voltmeter if drawn accept for LDR (with /without) circle and 2 arrows / variable resistor / general transducer symbol for LDR (thermistor) not LED or lamp or fuse or photodiode or other symbols
	(a)	(ii)	resistance ratio changes / voltage is shared (between resistors) ;	1	applying the potential divider or voltage ratio equation with correct sense can score all 3 marks
			correct direction of change in resistance ratio $(R_f / R_{LDR} \text{ increases or v.v.})$;	1	expect candidates to make clear which R they are talking about
			Link resistance to p.d. by : use of potential divider equation or voltage ratio = resistance ratio OR as light intensity rises R_{LDR} falls so R_{total} falls ;	1	accept voltage is shared in proportion to the resistances
			current increases ;		not current is constant (in series circuit)
			p.d. across <i>R</i> _{FIXED} rises / p.d. across LDR falls		QoWC 3 rd mark only if steps in reasoning are clear and no logical errors
	(b)	(i)	$\begin{array}{c} \text{change in output / change in input } / \\ \Delta \text{dependent } / \Delta \text{independent } / \\ \Delta y / \Delta x & / & \Delta V_{\text{out}} / \Delta \text{intensity } / & \Delta_{\text{out}} / \Delta_{\text{in}} \end{array}$	1	ignore ± signs accept gradient of graph not resolution / how sensitivity changes with intensity not voltage change for a set/given lux change (don't read for as per)

Question	Answer	Marks	Guidance
(ii)	sensible tangent / triangle ;	1	method from graph with $\Delta lux \ge 400 lux$.
			If $\Delta lux < 400 max 2 out of 3 for in range answer$
			chord method approximation from graph if in range max 1 mark
			net any gradit 2.9 (1000 (granh values), for last 2 marks
	e.g. (5 - 2.5 V) / (1900 lux) ;	Ĩ	accont sensible values from graph
			accept sensible values norm graph
	$\{1.2 \pm 0.2\} \times 10^{-3}$ (V lux ⁻¹)	1	evaluation accept in range 1.0 x 10^{-3} to 1.4 x 10^{-3} (V lux ⁻¹)
		-	correct bare answer scores 3
(iii)	$(V_{\text{FIXED}}) = 3.8 \text{ V}$;	1	read from graph accept $V = 3.8$ (V) standalone credit
			allow small graph reading errors <u>+</u> 0.1 V correctly worked
	7 = 3.8 / 800 = 4.75 mA / 4.8 mA ;	1	through (in range 430 to 500 Ω) for the next 3 marks. Gross
	$V_{\rm DD} = 60 - 38 = 22 V$	1	
		•	
	$R_{\rm LDR} = 2.2 / 0.00475 = 460 \Omega / 4.6(3) \times 10^2 \Omega$	1	
	OR		
	potential divider equation or voltage ratio equation rearranged		accept substitution / rearrangement in either order
	for R _{LDR} ;		e.g. $3.8 = 6.0 \times 800 / (800 + R_{LDR})$
	aquation correctly substituted		
	evaluation $R_{\rm LDR} = (4800 - 3040) / 3.8 = 460 \Omega$		
			1380 Ω scores 2 out of 4
			bare correct answer 460 Ω scores 4 marks
	Total	12	

Que	stion		Answer	Marks	Guidance
9	(a)	(i)	image area $\approx 10^{-18} \text{ m}^2$ / 60 x 10 ¹⁸ atoms m ⁻² ;	1	accept mass of 60 atoms = 1.2×10^{-24} kg alt first mark
					accept number of atoms between 55 to 65 for those who have
					tried to count
			mass per $m^2 = 2 \times 10^{-20} (kg) \times 60 \times 10^{18} (atoms m^2)$;	1	not any further credit if area = 10^{-9} m ² max 1 out of 3
				4	
			$= 1.2 \times 10^{\circ} (\text{kg})$	1	expect $2 S.F. for snow that in range (1.1 to 1.3) x 10° (kg)$
	(0)	(::)	$(a - 1.2) \times 10^{-6} / (1 \times 1 \times 0.24) \times 10^{-9}$ $(a - 2500) km m^{-3}$	4	exponent 2520 kg m ⁻³ ($-20(41)$ kg m ⁻³ from above that
	(a)	(11)	$(p = 1.2 \times 10^{-7} (1 \times 1 \times 0.34 \times 10^{-7})) = 3500 \text{ kg m}$	Ĩ	accept 5529 kg III / $29(41)$ kg III II offi show that
	(-)	/:::)	$(-1)^{-9}$	4	accept ecilinalitye 5600 to 5200 kg m
	(a)	(111)	$F = (\sigma_{\rm B} \times A) \approx 4 \times 10^{-5} ({\rm Pa}) \times (0.1 \times 0.34 \times 10^{-5} ({\rm m}^{-}))$;	Ĩ	method expect correct substitution of values
			1 / (NI)	1	evaluation expect 2 S F for show that accent 1 36 (N)
			1.4 (N)	•	ORA 1N of force gives stress = 2.9×10^{10} Pa $< 4 \times 10^{10}$ Pa
	(b)		$\sigma = IL/(VA)$ OR $\sigma = GL/A$ and $G = I/V$;	1	method accept $G = I/V = 4.4(7) \times 10^{-11} \text{ S}$ /
	. ,				$R = 2.2(4) \times 10^{10} \Omega$ for first mark
			= $6.7 \times 10^{-15} \times 0.34 \times 10^{-9} / (0.15 \times 10^{-3}) \times \{200 \times 10^{-9}\}^2$;	1	accept inverse substitution for ρ
					substitution penalise each POT error by a mark lost
			$= 3.8 \times 10^{-7} (\text{Sm}^{-1})$	1	evaluation

Question	Answer	Marks	Guidance
(c)	 (i) mechanical e.g. cycle frames / car bodies / space elevator cable / carrier bags / space craft / aircraft / bridge cables / other built structures / protective clothing / bullet proof vests / graphene reinforcing a plastic composite etc. ; 	1	First two marks awarded for two plausible applications. not pencils / lubricants / heat conduction / just cars / just cycles / just buildings / just clothing
	 (ii) electrical e.g. solar cells / transistors / circuits / LEDs / doped layers to make gates / touch screen / sensors / electrical cables / connectors / switches / insulators (in semiconducting orientation) etc.; 	1	one application repeated only scores 1 mark even if both properties relevant
	high strength / low density / high stiffness (directional) AND specified conductivity (high / metallic / semiconducting / both / high charge carrier density)	1	Third mark awarded for a correctly stated property related to each application
	e.g. touch screen conducting layers separated by insulators, which contact under pressure / electrical cables useful to minimise heat losses / weight / size	1	QoWC further detail or development of link between one property and application or two relevant properties applied to one application for 4 th mark e.g. car bodies strong and low density / lightweight
	for fuel saving / strong and lightweight		OR circuits using two orientations of graphene deposit to use metallic conduction for connectivity and semiconduction for constructing components / due to electrical anisotropy
	to wrap around items		
	Total	13	

Que	stion		Answer	Marks	Guidance
10	(a)		contain more information / less error prone ; contain information in 2-d (rather than 1-d) / more combinations / more alternative / more possibilities / more patterns / better resolution required to measure bar width	1	 accept more data / bits / details / other plausible suggestions not data security accept in pixel form rather than "smeared" linear array / squares take less area than bars / AW not more variations
	(b)	(i)	(33 ² / 8) = 136 (bytes)	1	accept 136.125 (bytes) not 137 / 140 (bytes)
	(b)	(ii)	2 ⁸ / 256	1	
	(b)	(iii)	to help with recognising the alignment / orientation of the code / so that bits are considered in correct order for reading by software	1	accept to recognise as QR code / detect edges / boundaries / corners of code / locate the data / to aid focus by scanner not parity bits
	(c)	(i)	size of image = $M \times \text{size object}$ / $\approx 5/100 \times 33 \text{ mm}$ = 1.7 mm (< 2.0 mm) OR check that 2/33 > 5 /100 ; comparing magnifications OR compare angles subtended at lens ; 33 /100 < 2 / 5	1	allow magnification = 0.05 for 1 mark accept 1.65 mm allow correct answer from M = 20 allow 1 out of 2 marks i.e. check actual $M < 2/33$ accept comparing triangles not any credit for correct $y = 5.3$ mm here (lens formula)
	(c)	(ii)	1/v = 1/(-0.1) + 1/(0.005) / = -10 + 200 = 190 D	1	method
			$\therefore v = 1/190 = 5.26 \times 10^{-3} \text{ m} / 5.3 \text{ mm}$	1	evaluation accept 5.26 mm not 5 mm / 0.005 m SF penalty allow 1 mark (from first 2) for sign error ($u = + 0.1$) giving 210 D and $v = 4.8$ mm
			f x 1.05 = 5 x 1.05 = 5.25 mm / (5.26 - 5.0) / 5.0 = 0.052 (5.2%)	1	calculation of 105% x <i>f</i> allow as standalone mark only allow credit for working in c(i) if referenced here accept 5.3% not any credit for <i>u v</i> transposition leading to -5.3 mm and 5%

G491

Question		Answer	Marks	Guidance
(c)	(iii)	image of several QR modules can cover 1 camera pixel /	1	credit a sensible further problem explicitly stated e.g. resolution
		details of code not resolved /		accept resolution too high / too low
		there will only be 1 pixel per module at limit of resolution		not just information lost / averaged
		EITHER		
		(M = v/u = pixel size / module size) 5/u = 0.002/1 in mm	1	accept calculations for other <i>u</i> values near to 2.5 m if
		<i>u</i> = (1/0.002) x 5 = 2500 mm / 2.5 m	1	supported by conclusio reaconing
		OR		
		module image size = $1/500 \times 1 \text{ mm} / 2 \times 10^{-6} \text{ m}$;		
		pixel size = 2 mm / 1000 / 2 x 10 ⁻⁶ m		Scroll down this image to check that page16 of the paper has no candidate response to be credited. Use BP annotation on every blank page. Responses must be annotated / marked and credited to relevant question total. If no credit due use ^ annotation to show attempt seen.
		Total	13	
		Total Section B	38	
		Total for paper	60	