Question (****+)

A person standing at a fixed origin O observes an insect taking off from a point A on horizontal ground.

The position vector of the insect, t seconds after taking off, is given by

$$
\mathbf{r}=(t+1) \mathbf{i}+\left(2 t+\frac{1}{2}\right) \mathbf{j}+2 t \mathbf{k}
$$

All distances are in metres and the coordinates axes $O x, O y, O z$ are oriented due east, due north and vertically upwards, respectively.
a) Find ...
i. ... the coordinates of A.
ii. ... the bearing of the insect's flight path.
iii. ... the angle between the flight path and the horizontal ground.

The roof top of a garden shed is located at $B\left(5, \frac{9}{2}, 3\right)$.
b) Calculate the shortest distance between the insect's path and the point B.

When the insect reaches a height of 20 metres, at the point C, the insect gets eaten by a bird.
c) Determine the coordinates of C.

$$
A\left(1, \frac{1}{2}, 0\right), \text { bearing } \approx 027^{\circ}, \theta \approx 42^{\circ}, \sqrt{5}, C\left(11, \frac{41}{2}, 20\right)
$$

