Question (****+)

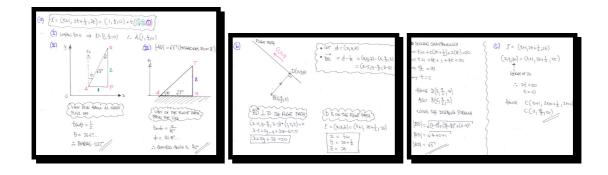
A person standing at a fixed origin O observes an insect taking off from a point A on horizontal ground.

The position vector of the insect, t seconds after taking off, is given by

$$\mathbf{r} = (t+1)\mathbf{i} + (2t + \frac{1}{2})\mathbf{j} + 2t\mathbf{k} .$$

All distances are in metres and the coordinates axes Ox, Oy, Oz are oriented due east, due north and vertically upwards, respectively.

- **a)** Find ...
 - i. ... the coordinates of A.
 - ii. ... the bearing of the insect's flight path.
 - iii. ... the angle between the flight path and the horizontal ground.


The roof top of a garden shed is located at $B(5, \frac{9}{2}, 3)$.

b) Calculate the shortest distance between the insect's path and the point B.

When the insect reaches a height of 20 metres, at the point C, the insect gets eaten by a bird.

c) Determine the coordinates of *C*.

$$A(1,\frac{1}{2},0)$$
, bearing $\approx 027^{\circ}$, $\theta \approx 42^{\circ}$, $\sqrt{5}$, $C(11,\frac{41}{2},20)$

