Question

Given the trigonometric equation

$$
\frac{\sin (x-\alpha)}{\cos (x-\alpha)-2 \tan \alpha \sin (x-\alpha)}=\tan \alpha,
$$

show clearly that

$$
\tan x=2 \tan \alpha .
$$

Question

The point P whose x coordinate is 1 lies on a curve with equation $y=f(x)$.

The tangent to the curve at P passes through the point $Q(2,2)$.

Given that the tangent to the curve at the point where $x=0$ has gradient 2 , determine the equation of $f(x)$.

Question

By using the substitution $x=2 \tan ^{2} \theta$, or otherwise, find

$$
\int \frac{2-x}{\sqrt{x}(x+2)^{2}} d x
$$

Question

Determine the two real roots of the equation

$$
(x-7)(x-3)(x+5)(x+1)=1680 .
$$

Question

With respect to a fixed origin O, the points A, B and C have position vectors

$$
\mathbf{a}=\left(\begin{array}{l}
0 \\
5 \\
2
\end{array}\right), \mathbf{b}=\left(\begin{array}{l}
8 \\
2 \\
7
\end{array}\right) \text { and } \mathbf{c}=\left(\begin{array}{c}
11 \\
0 \\
1
\end{array}\right) .
$$

a) Determine the volume of the cube.

The points P, Q and R are vertices of a different cube, so that

$$
\overrightarrow{P Q}=\left(\begin{array}{l}
0 \\
1 \\
7
\end{array}\right) \text { and } \overrightarrow{P R}=\left(\begin{array}{l}
k \\
4 \\
3
\end{array}\right)
$$

where k is a positive constant.
b) Given that $\measuredangle Q P R=60^{\circ}$, determine \ldots
i. ... the value of k.
ii. ... the length of the diagonal of the second cube.

Question

A sequence $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \ldots$ is given by the recurrence formula

$$
u_{n+2}=\frac{3 u_{n}+u_{n+1}}{2}, \quad u_{1}=1, u_{2}=1 .
$$

It is further given that in this sequence the ratio of consecutive terms converges to a limit L.

Determine the value of L.

Question

The straight line with equation

$$
y=t(x-2),
$$

where t is a parameter, crosses the circle with equation

$$
x^{2}+y^{2}=1
$$

at two distinct points A and B.
a) Show that the coordinates of the midpoint of $A B$ are given by

$$
M\left(\frac{2 t^{2}}{1+t^{2}},-\frac{2 t}{1+t^{2}}\right)
$$

b) Hence show that the locus of M as t varies is a circle, stating its radius and the coordinates of its centre.

Question

Express

$$
\frac{1}{\sqrt{5+\sqrt{24}}}
$$

in the form $\sqrt{p}-\sqrt{q}$, where p and q are integers.

Question

The $k^{\text {th }}$ of an arithmetic progression is 849 , where k is a positive integer.
The $(k+p)^{\text {th }}$ term and the $(k+2 p+1)^{\text {th }}$ term of the same arithmetic progression are 873 and 905 respectively, where p is a positive integer.

Find the value of the $(k+20)^{\text {th }}$ term of the progression.

