Created by T. Madas

Question 70 (*****)

The function f is defined as

$$
f(n)=\frac{\mathrm{e}^{-\lambda} \lambda^{n}}{n!}
$$

where $n=0,1,2,3,4, \ldots$ and λ is a positive constant.

By showing a detailed method, prove that ...
a) $\ldots \sum_{n=0}^{\infty}[n f(n)]=\lambda$.
b) $\ldots \sum_{n=0}^{\infty}\left[n^{2} f(n)\right]=\lambda^{2}+\lambda$.

Created by T. Madas

Question 73 (*****)

Consider the binomial infinite series expansion

$$
(1+a x)^{n}
$$

where $a \in \mathbb{R}, n \in \mathbb{Q}, n \notin \mathbb{N}$.

Show that the series converges if $|a x|<1$.

Created by T. Madas

Question 75 (*****)

Show clearly that

$$
\sum_{r=1}^{\infty} \frac{r^{2}}{2^{r}}=6
$$

Question 76 (*****)
Show clearly that

$$
1+\frac{1}{24}+\frac{1 \cdot 4}{24 \cdot 48}+\frac{1 \cdot 4 \cdot 7}{24 \cdot 48 \cdot 72}+\frac{1 \cdot 4 \cdot 7 \cdot 10}{24 \cdot 48 \cdot 72 \cdot 96}-\ldots=\frac{2}{\sqrt[3]{7}}
$$

Created by T. Madas

Question 77 (*****)

$$
S_{n}=\sum_{r=1}^{n}\left(r^{2} \times 2^{r}\right)
$$

Use the standard techniques for the summation of a geometric series, to show that

$$
S_{n}=\left(n^{2}-2 n+3\right) \times 2^{n+1}-6
$$

[You may not use proof by induction in this question.]

Created by T. Madas

Question 78 (*****)

The binomial probability distribution $X \sim \mathrm{~B}(n, p)$ satisfies

$$
P(X=r)=\binom{n}{r} p^{r}(1-p)^{n-r},
$$

where $r=0,1,2,3, \ldots, n$ and $0<p<1$.

The expectation of X is defined as

$$
\mathrm{E}(X) \equiv \sum_{r=0}^{n}[r \mathrm{P}(X=r)]
$$

Show that

$$
\mathrm{E}(X)=n p .
$$

