Created by T. Madas

Question (*****)

The figure above shows the wall $A B$ of a certain structure, which is supported by a straight rigid beam $P R$, where P is on level ground and R is at some point on the wall.

In order to increase the rigidity of the support, the beam is rested on a steady pole $N Q$, of height 3.2 metres.

The pole is placed at a distance of 1.35 metres from the bottom of the wall B.

The beam $P R$ is forming an acute angle θ with the horizontal ground $P N B$.

The angle θ is chosen so that the length of the beam $P R$, is least.

Determine the least value for the length of the beam $P R$, assuming that R lies on the wall, fully justifying that this is indeed the minimum value.

