PHYA5 Section A - Unofficial MS

Question 1 (6 marks)

(a) Alpha \checkmark (1)
(b) (i) Range of alpha - Few centimetres e.g. 0.05 m

Range of beta - Few tens of centimetres e.g. 0.5 m or 1 m (2)
(ii) Inverse square law means count rate drops significantly. (1)
(c) Dust contaminated with Americium (an alpha emitter) is hazardous when inhaled. Alpha particles are highly ionising and can therefore damage living cells. (2)

Question 2 (8 marks)

(a) (i) Electrostatic repulsion. (1)
(ii) There is no effect because isotopes of Au have the same number of protons in the nucleus, so the nuclear charge remains the same. (1)
(b) (i) Show that $r_{0} \approx 1.4 \times 10^{-15} \mathrm{~m}$
(ii) Radius of ${ }^{51} \mathrm{~V}$ nucleus $R=r_{0} A^{\frac{1}{3}}=5.2 \times 10^{-15} \mathrm{~m}$
(c) Density of ${ }^{51} \mathrm{~V}$ nucleus $\rho=\frac{m}{V} \quad V=\frac{4}{3} \pi r^{3} \quad \therefore \quad \rho=\frac{3 m}{4 \pi r^{3}}=1.4 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$

Question 3 (11 marks)

(a) ${ }_{93}^{239} N p \rightarrow{ }_{94}^{239} \mathrm{Pu}+{ }_{-1}^{0} \beta^{-}+\bar{\nu}_{e}$
(b) (i) Show that $\lambda \approx 3.4 \times 10^{-6} s^{-1}$
(ii) $A=\lambda N \quad \therefore \quad N=\frac{A}{\lambda}=2.4 \times 10^{17}$
(c) (i) When Uranium nuclei decay, neutrons are released which cause further fission. (2)
(ii) The moderator slows down neutrons (kinetic energy is transferred from the neutrons to the moderator nuclei). After about 50 collisions, the neutrons reach thermal speeds. (2)
(iii) Nuclei within the shielding absorb neutrons and become unstable. (2)

Question 4 (4 marks)

(a) 130 J of energy is required to raise the temperature of 1 kg of lead by 1 K (without a change of state). (1)
(b) $Q=m l+m c \Delta T=4.7 \times 10^{4} J$

Question 5 (11 marks)

(a) Describe an experiment that would allow you to determine a value for absolute zero. (6)

- Keep volume constant
- Measure pressure of gas at several temperatures
- Take repeat readings
- Plot a graph of pressure/Pa against temperature $/{ }^{\circ} \mathrm{C}$
- Extrapolate line backwards until it touches temp axis (should be around $-273^{\circ} \mathrm{C}$)
- This is absolute zero
- At absolute zero, the molecules have no kinetic energy (they are completely stationary)
- No force is exerted on the sides of the container (Newton's $2^{\text {nd }}$ Law)
- Pressure is zero

$$
F=\frac{\Delta m v}{t} \quad p=\frac{F}{A}
$$

(It would also be possible to describe an experiment that results in plotting a graph of volume against temperature).
(b)(i) Any two from:

- The molecules are in random motion (they move in all directions and have a range of speeds).
- Collisions are perfectly elastic.
- Newtonian mechanics apply.
(ii) $\left(c_{r m s}\right)^{2}=\frac{\left(2000^{2}+3000^{2}+7000^{2}\right)}{3}=2.1 \times 10^{7} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
(c) $E_{k}=\frac{3}{2} k T \quad \therefore \quad T=\frac{2 E_{k}}{3 k}=319 K$

Total for Section A-40 marks

