PHYA5 Section B (Astrophysics) - Unofficial MS

Question 1 (10 marks)

(a) (i) Maximum distance to Vesta $3.57 \mathrm{AU}=5.36 \times 10^{11} \mathrm{~m}$
(ii) Show that the angle subtended by Vesta as viewed from Earth is $3.12 \times 10^{-6} \mathrm{rad}$

$$
\begin{equation*}
\theta=\left(\frac{\text { diameter of Vesta }}{\text { distance to Vesta }}\right) \quad(\tan \theta \approx \theta \text { for small angles }) \tag{2}
\end{equation*}
$$

(b) (i) Draw a ray diagram for a Cassegrain telescope. (2)

(ii) Calculate the diameter of the IRTF telescope.

$$
\begin{equation*}
\theta=\frac{\lambda}{D} \quad \therefore \quad D=\frac{\lambda}{\theta}=3.0 m \tag{2}
\end{equation*}
$$

(c) Vesta can be observed with a high level of detail. This is because the minimum angle of resolution of the IRTF is much smaller than the angle subtended by Vesta as viewed from Earth. (2)

Question 2 (11 marks)

(a) Explain the shape of both graphs and show how the period and speed of the binary system can be determined. Include calculations in your answer. (6)

- The peaks on the first graph occur when one of the stars passes in front of the other.
- This results in the binary system appearing dimmer from Earth (apparent magnitude value is greater).
- The peaks on the second graph occur due to the blue-shift and red-shift of light from one of the stars.
- When the star is moving towards Earth in its orbit around a centre of mass, the light is blue-shifted (smaller wavelength). When the star is moving away from Earth, the light is red-shifted (bigger wavelength).
- The period of the system can be determined using either graph.
- Distance between two peaks x2 in the first graph, and distance between maxima (or minima) in the second graph.
- The period is 4 days.
- The speed of the system can be calculated as follows:

$$
\frac{\Delta \lambda}{\lambda}=\frac{v}{c} \quad \therefore \quad v=\frac{\Delta \lambda c}{\lambda}=1.1 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}
$$

(b) Hydrogen Balmer lines are present in the star's spectrum. This is because its temperature is high enough for hydrogen atoms in its atmosphere to exist in the $\mathrm{n}=2$ state. (2)
(c) Calculate the absolute magnitude of the binary system when it appears dimmest (the answer to this question depends on the value for apparent magnitude you used).

$$
\begin{align*}
& M=m-5 \log \left(\frac{d}{10}\right) \quad d=25 p c \quad m=1.981 \\
& \Longrightarrow \quad M=-8.7 \times 10^{-3} \tag{3}
\end{align*}
$$

Question 3 (8 marks)

(a) (i) Calculate the black body temperature of 40 Eridani B.

$$
\begin{equation*}
\lambda_{\max } T=0.0029 m K \quad \therefore \quad T=\frac{0.0029}{\lambda_{\max }}=16000 K \tag{3}
\end{equation*}
$$

(ii) Calculate the radius of 40 Eridani B. (2)
$P=\sigma A T^{4} \quad A=4 \pi r^{2} \quad \therefore \quad r=\sqrt{\frac{P}{4 \pi \sigma T^{4}}}=9.37 \times 10^{6} \mathrm{~m}$
(b) (i) Dwarf star \checkmark (1)
(ii) 40 Eridani B is a dwarf star because it has a very small radius (similar to that of the Earth) and a high temperature. (2)

Question 4 (6 marks)

(a) A black hole is an extremely dense object with a gravitational field so great that its escape velocity is greater than the speed of light. (1)
(b) Calculate the Schwarzschild radius.

$$
\begin{equation*}
R=\frac{2 G M}{c^{2}}=2.95 \times 10^{13} \mathrm{~m} \tag{2}
\end{equation*}
$$

(c) Use the data to estimate a value for the age of the universe in seconds.

$$
\begin{equation*}
\text { age }=\frac{1}{H} \quad v=H d \quad \therefore \quad \text { age }=\frac{d}{v} \approx 5 \times 10^{17} \mathrm{~s} \tag{3}
\end{equation*}
$$

Total for Section B-35 marks

