15.

kth head is achieved on nth toss if previous $n-1$ tosses produced $k-1$ heads and nth toss was a head i.e. Probability $=\binom{n-1}{k-1} p^{k-1}(1-p)^{n-k} \times p=\binom{n-1}{k-1} p^{k}(1-p)^{n-k}$
Given that it took an even number of tosses to achieve exactly k - 1 heads then the Lth head will occur on an even numbered toss if we have an odd number of tails followed by a head so probability $=p \sum_{r=1}^{\infty}(1-p)^{2 r-1}=p \times \frac{(1-p)}{1-(1-p)^{2}}=\frac{(1-p)}{2-p}$ (sum of infiniteG.P) P (first head occurs on an odd numbered toss) $=\frac{(1-p)^{2}}{2-p}$
So P(Exactly two heads are on even numbered tosses) $=3 \times\left[\frac{(1-p)}{2-p}\right]^{2} \frac{(1-p)^{2}}{2-p}=\frac{3(1-p)^{3}}{(2-p)^{2}}$

