9. (i) $x^{2}>2$ and $x^{3}>3 \Rightarrow x^{5}>6$ so statement is false for $n=5$ hence, $n \leq 4$
(ii) The series $\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n^{2}}$ has $n^{2}-n$ termseach of which is $\geq \frac{1}{n^{2}}$
so the sum $>\frac{n^{2}-1}{n^{2}}=1-\frac{1}{n}$ aso $\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n^{2}}>\frac{1}{n}+1-\frac{1}{n}=1$ $\sum_{n=1}^{N} \frac{1}{n}$ may be written as $1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)=\left(\frac{1}{5}+\ldots+\frac{1}{8}\right)+\ldots+\left(\frac{1}{2^{r-2}+1}+\ldots+\frac{1}{2^{r-1}}\right)$
giving r brackets each of which has a sum $>\frac{1}{2}$ so taking 19 of these brackets gives a sum >10 hence, we may take $\mathrm{N}=2^{18}$
