10. If T_{i} is the tension in the portion $\mathrm{A}_{\mathrm{i}-1} \mathrm{~A}_{\mathrm{i}}$ and this portion makes an angle θ with the horizontal then, resolving vertically at A_{i}, by symmery, $\mathrm{T}_{\mathrm{i}} \sin \theta=\frac{1}{2}(2 n+3-2 i) \mathrm{w}$
horizontal component of T_{i} will remain constant throughout the length of the chain so $T_{i} \cos \theta=X$ say hence, $\tan \theta=\frac{(2 n+3-2 i) w}{2 X}=\frac{y_{i-1}-y_{i}}{h} \Rightarrow \frac{(2 n+3-2 i) h}{y_{i-1}-y_{i}}=\frac{2 X}{w}=K$ (a constant)
so taking $i=n+1, n, \ldots, 1$ we have $\frac{h}{y_{n}-y_{n+1}}=\frac{3 h}{y_{n-1}-y_{n}}=\ldots=\frac{(2 n+1) h}{y_{0}-y_{1}}$ as required.
Now let A_{0} be the origin of coordinates, then $x_{1}=h, y_{1}=-\frac{(2 n=1) h}{k}$
$x_{2}=2 h, y_{2}=-\left(\frac{(2 n+1) h}{K}+\frac{2 n h}{K}\right)$ and in general $x_{i}=i h, y_{i}=-\sum_{r=1}^{i} \frac{(2 n+2-r) h}{K}$
i.e. $y_{i}=-\frac{h}{K}\left[(2 n+2) i-\frac{i(i+1)}{2}\right]=\frac{\left(i^{2}-3 i-4 n\right) h}{2 K}=\frac{\left(\frac{x_{i}^{2}}{h^{2}}-\frac{3 x_{i}}{h}-4 n\right) h}{2 K}=\frac{1}{2 K}\left(\frac{x_{i}^{2}}{h}-3 x_{i}-\frac{4 n}{h}\right)$
i.e. $y=A x^{2}+B x+C$ where $A=\frac{1}{2 K h}, B=-\frac{3}{2 K}$ and $C=-\frac{4 n}{2 K h}$
so points lie on a parabola.
