14. Let $a=2 k$ then we may take $b=k+1$ with $c=k$, i.e one triangle or taking $b=k+2$ with $c=k+1, k$ or $k-1$ gives 3 triangles, or in general taking $b=k+r$ we may take $c=k+(r-1), k+(r-2), \ldots, k+(1-r)$ giving $k+(r-1)-(k+(1-r))+1=2 r-3$ triangles
so total number of possible triangles is $1+3+5+\ldots+2 N-3$ and $2 n-3=a-3$
Now let $\mathrm{a}=2 \mathrm{k}+1$ then we may take
$b=k+r$ with $c=k+(r-1), k+(r-2), \ldots, k+2-r$ giving $2 r-2$ triangles
so number of possible triangles is $2+4+6=\ldots=2 \mathrm{~N}-2(=a-3)$
so total number of non-degenerate triangles is
$a=4 ;(b, c)=(3,2)$
$a=5 ;(b, c)=(4,3),(4,2)$
$a=6 ;(b, c)=(5,4),(5,3),(5,2),(4,3)$
$a=7 ;(b, c)=(6,5),(6,4),(6,3),(6,2),(5,4),(5,3)$
.e. $1+2+(1+3)+92+4)+(1+3+5)+(2+4+6)+\ldots+(1+3+\ldots+2 N-3)+(2+4+\ldots+2 N-2)$
$=(1+2)+(1+2+3+4)=(1+2+\ldots+6)=91+\ldots+8)+\ldots+(1+\ldots+2 N-2)$
$=3+10=21+36=\ldots=N(2 N+1)=\sum_{r=1}^{N-1} r(2 r+1)=2 \sum_{r=1}^{N-1} r^{2}+\sum_{r=1}^{N-1} r$
$=\frac{2}{6}(\mathrm{~N}-1) \mathrm{N}(2 \mathrm{~N}-1)+\frac{1}{2}(\mathrm{~N}-1) \mathrm{N}=\frac{1}{6} \mathrm{~N}(\mathrm{~N}-1)(4 \mathrm{~N}-2+3)=\frac{1}{6} \mathrm{~N}(\mathrm{~N}-1)(4 \mathrm{~N}+1)$
so for any value of N, the number of triangles is $\frac{1}{6} N(N-1)(4 N+1)$
$N=3$ gives $\frac{1}{2} \times 2 \times 13=13$
Check!
Fromabove $a=7$ gives 6 triangles, $a=6$ gives $4, a=5$ gives 2 and $a=4$ gives 1 i.e a total of 13 Number of possible selections of thre rods is $\frac{1}{6}(2 N+1) 2 N(2 N-1)=\frac{1}{3} N\left(4 N^{2}-1\right)$
so probability that a triangle can be formed from 3 randomly selected rods is $\frac{\frac{1}{6} N(N-1)(4 N+1)}{\frac{1}{3} N\left(4 N^{2}-1\right)}$ i.e. $\frac{(N-1)(4 N+1)}{2\left(4 N^{2}-1\right)}$ as required.
