16. Since the toad only attempts to cross when it is safe, she is certain to cross without mishap.
$P($ frog crosses safely $)=0.1+0.9 \times 0.1+0.9^{2} \times 0.2+0.9^{2} \frac{2}{3} \times 0.1+0.9^{3} \times\left(\frac{2}{3}\right)^{2} \times 0.2+$

$$
+0.9^{3} \times \frac{2}{3} \times \frac{1}{3} \times 0.1+0.9^{4} \frac{2}{3} \times \frac{1}{3} \times 0.2=0.4081
$$

P (both cross safely with frog beforethe toad) $=P$ (frog crosses safely before it is safe to do so)
i.e. $0.9^{2} \times \frac{1}{3} \times 0.2+0.9^{3} \times\left(\frac{2}{3}\right)^{2} \times 0.2+0.9^{4} \times \frac{2}{3} \times \frac{1}{3} \times 0.2=0.148$

P (frog is run over given he has not arrived after 2 minutes)
$=\frac{P(\text { he is run over and has not arrived after } 2 \text { minutes) }}{P(h)}$
P (he is run over)
$=\frac{P(\text { he has not arrived after } 2 \text { minutes) }}{=}=\frac{P(\text { not arrived after } 2 \text { minutes) }}{}$
P (he is run over)
1-0.4081
$=\frac{P(\text { he has crossd in first } 2 \text { minutes) }}{1-P}=\frac{1-0.4081}{1-\left(0.1+0.9 \times 0.1+0.9^{2} \times \frac{1}{3} \times 0.2+0.9^{3} \times\left(\frac{2}{3}\right)^{2} \times 0.2\right)}$
$=\frac{0.5919}{0.6048}=0.9787$

