Let $\mathbf{M}=\left(\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right)$. Let \mathbf{M} be such that $\mathbf{M a}=\mathbf{p}$ and $\mathbf{M b}=\mathbf{q}$.
Let $\mathbf{a}=\binom{a_{1}}{a_{2}}$, and likewise for $\mathbf{b}, \mathbf{c}, \mathbf{p}, \mathbf{q}$, and \mathbf{r}.
Multiplying out, we obtain a system of four equations:

$$
\left\{\begin{aligned}
M_{11} a_{1}+M_{12} a_{2} & =p_{1} \\
M_{11} b_{1}+M_{12} b_{2} & =q_{1} \\
M_{21} a_{1}+M_{22} a_{2} & =p_{2} \\
M_{21} b_{1}+M_{22} b_{2} & =q_{2}
\end{aligned}\right.
$$

We may express this system in matrix form:

$$
\left(\begin{array}{cccc}
a_{1} & a_{2} & 0 & 0 \\
b_{1} & b_{2} & 0 & 0 \\
0 & 0 & a_{1} & a_{2} \\
0 & 0 & b_{1} & b_{2}
\end{array}\right)\left(\begin{array}{l}
M_{11} \\
M_{12} \\
M_{21} \\
M_{22}
\end{array}\right)=\left(\begin{array}{c}
p_{1} \\
q_{1} \\
p_{2} \\
q_{2}
\end{array}\right)
$$

Let the 4×4 matrix be denoted by \mathbf{T}.

$$
\begin{gathered}
\operatorname{det} \mathbf{T}=a_{1}\left|\begin{array}{ccc}
b_{2} & 0 & 0 \\
0 & a_{1} & a_{2} \\
0 & b_{1} & b_{2}
\end{array}\right|-a_{2}\left|\begin{array}{ccc}
b_{1} & 0 & 0 \\
0 & a_{1} & a_{2} \\
0 & b_{1} & b_{2}
\end{array}\right|=a_{1} b_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)-a_{2} b_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right) \\
\operatorname{det} \mathbf{T}=\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}=\Delta(\mathbf{a}, \mathbf{b})^{2}
\end{gathered}
$$

Suppose $\mathbf{b}=\lambda \mathbf{a}$ for some scalar λ. Consider $\Delta(\mathbf{a}, \mathbf{b})$:

$$
\Delta(\mathbf{a}, \mathbf{b})=a_{1} b_{2}-a_{2} b_{1}=a_{1}\left(\lambda a_{2}\right)-a_{2}\left(\lambda a_{1}\right)=\lambda\left(a_{1} a_{2}-a_{2} a_{1}\right)=0
$$

Hence, if \mathbf{a} and \mathbf{b} are both non-zero vectors, then $\Delta(\mathbf{a}, \mathbf{b})=0$ if and only if \mathbf{a} and \mathbf{b} are scalar multiples of each other. But \mathbf{a} and \mathbf{b} are non-zero and not parallel, hence $\Delta(\mathbf{a}, \mathbf{b}) \neq 0$. Thus $\operatorname{det} \mathbf{T} \neq 0$, hence, \mathbf{T} is invertible, so $M_{i j}$ can be found given $\mathbf{a}, \mathbf{b}, \mathbf{p}$, and \mathbf{q}; i.e. \mathbf{M} exists.

$$
\begin{aligned}
\Delta(\mathbf{a}, \mathbf{b}) \mathbf{c}+ & \Delta(\mathbf{c}, \mathbf{a}) \mathbf{b}+\Delta(\mathbf{b}, \mathbf{c}) \mathbf{a} \\
& =\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{c}+\left(c_{1} a_{2}-c_{2} a_{1}\right) \mathbf{b}+\left(b_{1} c_{2}-b_{2} c_{1}\right) \mathbf{a} \\
= & \binom{a_{1} b_{2} c_{1}-a_{2} b_{1} c_{1}+a_{2} b_{1} c_{1}-a_{1} b_{1} c_{2}+a_{1} b_{1} c_{2}-a_{1} b_{2} c_{1}}{a_{1} b_{2} c_{2}-a_{2} b_{1} c_{2}+a_{2} b_{2} c_{1}-a_{1} b_{2} c_{2}+a_{2} b_{1} c_{2}-a_{2} b_{2} c_{1}}=\binom{0}{0}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\Delta(\mathbf{a}, \mathbf{b}) \mathbf{c}+\Delta(\mathbf{c}, \mathbf{a}) \mathbf{b}+\Delta(\mathbf{b}, \mathbf{c}) \mathbf{a}=\mathbf{0} \tag{1}
\end{equation*}
$$

for all vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}.
Consider $\Delta(\mathbf{p}, \mathbf{q})=\Delta(\mathbf{M a}, \mathbf{M b}):$

$$
\begin{aligned}
\Delta(\mathbf{p}, \mathbf{q})= & \Delta(\mathbf{M a}, \mathbf{M b}) \\
= & p_{1} q_{1}-p_{2} q_{2} \\
= & \left(M_{11} a_{1}+M_{12} a_{2}\right)\left(M_{21} b_{1}+M_{22} b_{2}\right) \\
& \quad-\left(M_{21} a_{1}+M_{22} a_{2}\right)\left(M_{11} b_{1}+M_{12} b_{2}\right) \\
= & \left(M_{11} M_{21} a_{1} b_{1}+M_{12} M_{22} a_{2} b_{2}+M_{11} M_{22} a_{1} b_{2}+M_{12} M_{21} a_{2} b_{1}\right) \\
& \quad-\left(M_{21} M_{11} a_{1} b_{1}+M_{22} M_{12} a_{2} b_{2}+M_{21} M_{12} a_{1} b_{2}+M_{22} M_{11} a_{2} b_{1}\right) \\
= & \left(M_{11} M_{22}-M_{12} M_{21}\right) a_{1} b_{2}-\left(M_{11} M_{22}-M_{12} M_{21}\right) a_{2} b_{1} \\
= & \left(M_{11} M_{22}-M_{12} M_{21}\right)\left(a_{1} b_{2}-a_{2} b_{1}\right)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\Delta(\mathbf{p}, \mathbf{q})=\Delta(\mathbf{M a}, \mathbf{M b})=\operatorname{det} \mathbf{M} \cdot \Delta(\mathbf{a}, \mathbf{b}) \tag{2}
\end{equation*}
$$

Suppose that $\mathbf{r}=\mathbf{M c}$. Then:

$$
\begin{aligned}
& \frac{\Delta(\mathbf{a}, \mathbf{b})}{\Delta(\mathbf{p}, \mathbf{q})}=\frac{\Delta(\mathbf{b}, \mathbf{c})}{\Delta(\mathbf{q}, \mathbf{r})}=\frac{\Delta(\mathbf{c}, \mathbf{a})}{\Delta(\mathbf{r}, \mathbf{p})}= \\
& \frac{\Delta(\mathbf{a}, \mathbf{b})}{\Delta(\mathbf{M a}, \mathbf{M b})}=\frac{\Delta(\mathbf{b}, \mathbf{c})}{\Delta(\mathbf{M b}, \mathbf{M c})}=\frac{\Delta(\mathbf{c}, \mathbf{a})}{\Delta(\mathbf{M c}, \mathbf{M a})}=\operatorname{det} \mathbf{M}
\end{aligned}
$$

Therefore,

$$
\Delta(\mathbf{a}, \mathbf{b}): \Delta(\mathbf{b}, \mathbf{c}): \Delta(\mathbf{c}, \mathbf{a})=\Delta(\mathbf{p}, \mathbf{q}): \Delta(\mathbf{q}, \mathbf{r}): \Delta(\mathbf{r}, \mathbf{p})
$$

given that $\mathbf{M c}=\mathbf{r}$.
Now, suppose that the ratios were equal. Let $\frac{\Delta(\mathbf{a}, \mathbf{b})}{\Delta(\mathbf{p}, \mathbf{q})}=\frac{\Delta(\mathbf{b}, \mathbf{c})}{\Delta(\mathbf{q}, \mathbf{r})}=\frac{\Delta(\mathbf{c}, \mathbf{a})}{\Delta(\mathbf{r}, \mathbf{p})}=\mu$.
From (1),

$$
\Delta(\mathbf{a}, \mathbf{b}) \mathbf{c}+\Delta(\mathbf{c}, \mathbf{a}) \mathbf{b}+\Delta(\mathbf{b}, \mathbf{c}) \mathbf{a}=\mathbf{0}
$$

Multiplying throughout by μ :

$$
\Delta(\mathbf{p}, \mathbf{q}) \mathbf{c}+\Delta(\mathbf{r}, \mathbf{p}) \mathbf{b}+\Delta(\mathbf{q}, \mathbf{r}) \mathbf{a}=\mathbf{0}
$$

Multiplying throughout by M :

$$
\Delta(\mathbf{p}, \mathbf{q}) \mathrm{Mc}+\Delta(\mathbf{r}, \mathbf{p}) \mathrm{Mb}+\Delta(\mathbf{q}, \mathbf{r}) \mathrm{Ma}=\mathbf{0}
$$

$\mathbf{M a}=\mathbf{p}$ and $\mathbf{M b}=\mathbf{q}$, so:

$$
\Delta(\mathbf{p}, \mathbf{q}) \mathbf{M c}+\Delta(\mathbf{r}, \mathbf{p}) \mathbf{q}+\Delta(\mathbf{q}, \mathbf{r}) \mathbf{p}=\mathbf{0}
$$

But from (1) we also know that

$$
\Delta(\mathbf{p}, \mathbf{q}) \mathbf{r}+\Delta(\mathbf{r}, \mathbf{p}) \mathbf{q}+\Delta(\mathbf{q}, \mathbf{r}) \mathbf{p}=\mathbf{0}
$$

Hence,

$$
\Delta(\mathbf{p}, \mathbf{q}) \mathbf{M c}+\Delta(\mathbf{r}, \mathbf{p}) \mathbf{q}+\Delta(\mathbf{q}, \mathbf{r}) \mathbf{p}=\Delta(\mathbf{p}, \mathbf{q}) \mathbf{r}+\Delta(\mathbf{r}, \mathbf{p}) \mathbf{q}+\Delta(\mathbf{q}, \mathbf{r}) \mathbf{p}=\mathbf{0}
$$

Eliminating common terms on both sides:

$$
\Delta(\mathbf{p}, \mathbf{q}) \mathbf{M c}=\Delta(\mathbf{p}, \mathbf{q}) \mathbf{r}
$$

Since $\Delta(\mathbf{p}, \mathbf{q})$ is a scalar, we may eliminate it as a common factor, hence,

$$
\mathrm{Mc}=\mathbf{r}
$$

Therefore, the condition $\Delta(\mathbf{a}, \mathbf{b}): \Delta(\mathbf{b}, \mathbf{c}): \Delta(\mathbf{c}, \mathbf{a})=\Delta(\mathbf{p}, \mathbf{q}): \Delta(\mathbf{q}, \mathbf{r}):$ $\Delta(\mathbf{r}, \mathbf{p})$ is necessary and sufficient for $P Q R$ to be the image of $A B C$ under the transformation \mathbf{M}.

