$$
a_{n}=\frac{1+a_{n-1}^{2}}{a_{n-2}}
$$

Suppose $a_{n}=3 a_{n-1}-a_{n-2}$ is true for all $2 \leq n \leq k$ for some $k \geq 2$. Consider a_{k+1} :

$$
\begin{aligned}
a_{k+1} & =\frac{1+a_{k}^{2}}{a_{k-1}} \\
& =\frac{1+\left(3 a_{k-1}-a_{k-2}\right)^{2}}{a_{k-1}} \\
& =\frac{1+9 a_{k-1}^{2}-6 a_{k-1} a_{k-2}+a_{k-2}^{2}}{a_{k-1}} \\
& =\frac{1}{a_{k-1}}+9 a_{k-1}-6 a_{k-2}+\frac{a_{k-2}^{2}}{a_{k-1}} \\
& =\frac{1+a_{k-2}^{2}}{a_{k-1}}+9 a_{k-1}-6 a_{k-2} \\
& =\frac{a_{k-3}}{a_{k-1}} \cdot \frac{1+a_{k-2}^{2}}{a_{k-3}}+9 a_{k-1}-6 a_{k-2} \\
& =\frac{a_{k-3}}{a_{k-1}} \cdot a_{k-1}+9 a_{k-1}-6 a_{k-2} \\
& =a_{k-3}+9 a_{k-1}-6 a_{k-2} \\
& =-\left(3 a_{k-2}-a_{k-3}\right)+9 a_{k-1}-6 a_{k-2}+3 a_{k-2} \\
& =-a_{k-1}+9 a_{k-1}-6 a_{k-2}+3 a_{k-2} \\
& =8 a_{k-1}-3 a_{k-2} \\
& =3\left(3 a_{k-1}-a_{k-2}\right)-a_{k-1} \\
a_{k+1} & =3 a_{k}-a_{k-1}
\end{aligned}
$$

Hence if $a_{n}=3 a_{n-1}-a_{n-2}$ is true for all $2 \leq n \leq k$ for some $k \geq 2$, then it is also true for all $n>k$. Consider a_{2} :

$$
\begin{gathered}
a_{2}=\frac{1+a_{1}^{2}}{a_{0}}=2 \\
a_{2}=3 a_{1}-a_{0}=2
\end{gathered}
$$

The two formulae agree, so since it is true for $n=2$, it is also true for all $n \geq 2$.

Suppose $a_{n}=r^{n}$ for some non-zero r satisfies the relation $a_{n}=3 a_{n-1}-$ a_{n-2}.

$$
r^{n}=3 r^{n-1}-r^{n-2}
$$

$$
\begin{gathered}
r^{n}-3 r^{n-1}+r^{n-2}=0 \\
r^{2}-3 r+1=0 \\
r=\frac{3 \pm \sqrt{9-4}}{2}=\frac{3 \pm \sqrt{5}}{2}=1+\frac{1 \pm \sqrt{5}}{2}
\end{gathered}
$$

Let $\beta_{+}=1+\frac{1+\sqrt{5}}{2}$ and $\beta_{-}=1+\frac{1-\sqrt{5}}{2}$. Any linear combination of $\beta_{+}{ }^{n}$ and $\beta_{-}{ }^{n}$ will satisfy the relation $a_{n}=3 a_{n-1}-a_{n-2}$.

Let us consider some powers of α :

$$
\begin{gathered}
\alpha=\frac{1+\sqrt{5}}{2} \\
\alpha^{-1}=\left(\frac{1+\sqrt{5}}{2}\right)^{-1}=\frac{2}{1+\sqrt{5}} \\
=\frac{2(1-\sqrt{5})}{(1+\sqrt{5})(1-\sqrt{5})}=\frac{2(1-\sqrt{5})}{1-5}=-\frac{2(1-\sqrt{5})}{4} \\
\alpha^{-1}=-\frac{1-\sqrt{5}}{2}=\alpha-1 \\
\alpha^{2}=\left(\frac{1+\sqrt{5}}{2}\right)^{2}=\frac{1+2 \sqrt{5}+5}{4}=\frac{6+2 \sqrt{5}}{4} \\
\quad=1+\frac{1+\sqrt{5}}{2}=1+\alpha \\
\alpha^{-2}= \\
=\left(-\frac{1-\sqrt{5}}{2}\right)^{2}=\frac{1-2 \sqrt{5}+5}{4}=\frac{6-2 \sqrt{5}}{4} \\
\end{gathered}
$$

Therefore, $\beta_{+}{ }^{n}=\alpha^{2 n}$ and $\beta_{-}{ }^{n}=\alpha^{-2 n}$. We also note that $\alpha+\alpha^{-1}=\sqrt{5}$.
Let $a_{n}=A \alpha^{2 n}+B \alpha^{-2 n}$ where A and B are coefficients to be determined. $a_{1}=1, a_{2}=2$, hence,

$$
\left\{\begin{array}{l}
A \alpha^{2}+B \alpha^{-2}=1 \\
A \alpha^{4}+B \alpha^{-4}=2
\end{array}\right.
$$

Multiplying the first equation by α^{-2} :

$$
A+B \alpha^{-4}=\alpha^{-2}
$$

Subtract it from the second equation:

$$
\begin{gathered}
\left(A \alpha^{4}+B \alpha^{-4}\right)-\left(A+B \alpha^{-4}\right)=2-\alpha^{-2} \\
A \alpha^{4}-A=2-\alpha^{-2} \\
A\left(\alpha^{4}-1\right)=2-\alpha^{-2} \\
A=\frac{2-\alpha^{-2}}{\alpha^{4}-1}=\frac{2-\left(1-\alpha^{-1}\right)}{\left(\alpha^{2}+1\right)\left(\alpha^{2}-1\right)}=\frac{1+\alpha^{-1}}{\alpha\left(\alpha+\alpha^{-1}\right)\left(\alpha^{2}-1\right)}
\end{gathered}
$$

But $\alpha^{-1}=\alpha-1$ and $\alpha^{2}=1+\alpha$, hence,

$$
\begin{align*}
& A=\frac{\alpha}{\alpha^{2}\left(\alpha+\alpha^{-1}\right)}=\frac{\alpha^{-1}}{\sqrt{5}} \tag{1}\\
& A \alpha^{2}+B \alpha^{-2}=\frac{\alpha^{-1}}{\sqrt{5}} \cdot \alpha^{2}+B \alpha^{-2}=1, \text { hence: } \\
& \frac{\alpha}{\sqrt{5}}+B \alpha^{-2}=1 \\
& B \alpha^{-2}=1-\frac{\alpha}{\sqrt{5}} \\
& B=\alpha^{2}\left(1-\frac{\alpha}{\sqrt{5}}\right) \\
&=\alpha^{2} \cdot \frac{\sqrt{5}-\alpha}{\sqrt{5}} \\
&=\alpha^{2} \cdot \frac{\left(\alpha+\alpha^{-1}\right)-\alpha}{\sqrt{5}} \\
&=\alpha^{2} \cdot \frac{\alpha^{-1}}{\sqrt{5}} \\
& B=\frac{\alpha}{\sqrt{5}} \tag{2}
\end{align*}
$$

Hence,

$$
a_{n}=\frac{\alpha^{-1}}{\sqrt{5}} \cdot \alpha^{2 n}+\frac{\alpha}{\sqrt{5}} \cdot \alpha^{-2 n}=\frac{\alpha^{2 n-1}+\alpha^{-(2 n-1)}}{\sqrt{5}}
$$

