STEP Mathematics Paper I 1987

11. Resolving radially for motion in circle

$$mg \cos \theta - R = \frac{mv^2}{r}$$

By conservation of energy $\frac{1}{2}mv^2 = mgr(1 - \cos \theta)$
so $mg \cos \theta - R = 2mg(1 - \cos \theta)$
 $\Rightarrow R = mg(3 \cos \theta - 2)$

Particle loses contact when R = 0 i.e. $\theta = \arccos \frac{2}{3}$ which is the angle of the velocity to the horizontal.

From start particle now falls a distance 2r so loss of potential energy is 2mgr horizontal component of velocity is $v\cos\theta = \frac{2v}{3}$ so if vertical component is V then gain in kinetic

energy =
$$\frac{1}{2}m\left(\frac{4v^2}{9} + V^2\right)$$
 and $v^2 = 2gr(1 - \cos\theta) = \frac{2}{3}gr$
hence, $\frac{4v^2}{9} + V^2 = 4gr \Rightarrow V^2 = 4\left(gr - \frac{v^2}{9}\right)$ so $V^2 = 4gr\left(1 - \frac{4}{81}\right) = \frac{308gr}{81}$

so vertical component of momentum at floor is $\frac{308mgr}{81}$