14. (b) and (c) could be records of a complete tournament since in eacvh case B has won two games in succession. (a) cannot be since here A, B and C have each won one game.
Sequences in which tournament is still undecided after 5 games are as follows:
ACBAC, BCABC so since each sequence has a probability of $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ probability that tournament is undecided after 5 games is $\frac{1}{16}$

A wins in fewer than 5 games with the sequences AA and BCAA so probability= $\frac{1}{4}+\frac{1}{16}=\frac{5}{16}$
B wins in fewer than 5 games with the sequences $A C B B$ and $B B$ so probability $=\frac{5}{16}$
C wins in fewer than 5 games with the sequences $A C C$ and $B C C$ so probability $=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$
A wins eventually with the sequences $A A, A C B A A, A C B A C B A A$ etc or BCAA, BCABCAA etc so probability $=\left[\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{5}+\left(\frac{1}{2}\right)^{8}+\ldots\right]+\left[\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{7}+\ldots\right]=\frac{\left(\frac{1}{2}\right)^{2}}{1-\left(\frac{1}{2}\right)^{3}}+\frac{\left(\frac{1}{2}\right)^{4}}{1-\left(\frac{1}{2}\right)^{3}}=\frac{\frac{5}{16}}{\frac{7}{8}}=\frac{5}{14}$
B wins eventually with sequences $\mathrm{BB}, \mathrm{BCABB}$, etc or $\mathrm{ACBB}, \mathrm{ACBACBB}$ etc so probability $=\frac{5}{14}$ C wins eventually with the sequences $A C C, A C B A C C$ etc or $B C C, B C A B C C$ etc
so probability $=2 \times \frac{\frac{1}{8}}{1-\frac{1}{8}}=\frac{4}{14}$

